The evaluation of the cortex neurons viability in CdS nanoparticles induced toxicity

Document Type : Research Paper


1 Department of Molecular Biology and Genetics, Biotechnology, Gaziosmanpasa University, Postal Code 60250, Tokat, Turkey

2 Department of Nanoscience and Nanoengineering, Institute of Naturel and Applied Sciences, Ataturk University, Postal Code 25240, Erzurum, Turkey

3 Department of Pharmacology and Toxicology, Faculty of Veterinary Science, Atatürk University, Postal Code 25240, Erzurum, Turkey

4 Department of Biology, Faculty of Science, Atatürk University, Postal Code 25240, Erzurum, Turkey

5 Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Postal Code 25240, Erzurum, Turkey


Objective(s): Cadmium sulfur (CdS) is a type of quantum dot which is a unique light-emitting semiconductor nanocrystal. Quantum dots have wide applications in optoelectronics, solar cells, biology, and medicine fields.
Materials and Methods: Morphological properties and structural analysis for CdS were tested by using different methods (TEM, XPS and XRD).  Cortical neuron cells were used for toxicity investigations. The cells were treated with different concentrations of CdS (100, 10, 1, 0.1, 0.01 µg/mL) and incubated for 24 h (5% CO2; 37°C). In vitro studies were done by examining cellular viability (MTT assay) and oxidative stress/status (TAC/TOS).
Results: According to our results, the increasing concentration of CdS resulted in decreased cell viability. Total antioxidant capacity (TAC) of neurons increased following exposure to the lowest concentrations of CdS. In addition, inverse to our TAC findings, total oxidant status (TOS) was decreased following exposure to lower concentrations of CdS.
Conclusion: Recently, because of advances in diagnostic and drug delivery systems ingestion rate of CdS by humans were increased. Hence, this study aimed to investigate the toxic effects of CdS on Cortex Neurons cell cultures. The production of CdS quantum dot particles was done by using the Viridibacillus arenosi K64 (biosynthesis method) which provides environmentally friendly, economical, reliable, and controlled production.


1.  Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev. 2010; 110(11): 6873-6890.
2.   Yang Z, Lu L, Berard VF, He Q, Kiely CJ, Berger BW, et al. Biomanufacturing of CdS quantum dots. Green Chem. 2015; 17(7): 3775-3782.
3.   Dikpati A, Madgulkar A, Kshirsagar SJ, Bhalekar M, Chahal AS.Targeted drug delivery to CNS using nanoparticles. JAPS. 2012; 2(1): 179-191.
4. Gallardo-Benavente C, Carrión O, Todd JD, Pieretti JC, Seabra AB, Durán N, et al.  Biosynthesis of CdS quantum dots mediated by volatile sulfur compounds released by Antarctic Pseudomonas fragi. Front Microbiol. 2019; 10: 1866.
5.   Kaplan ABU, Cetin M, Orgul D, Taghizadehghalehjoughi A, Hacimuftuoglu A, Hekimoglu S. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein. J Drug Deliv Sci Technol. 2019; 52: 189-203.
6.     Taghizadehghalehjoughi A, Hacimuftuoglu A, Cetin M, Kaplan ABU, Butuner S, Taspinar N, et al. The effects Metformin/Irinotecan-loaded PLGA nanoparticles on glutamate re-uptake time and alteration EAAT1 gene expression level           in vitro. Nanomed J. 2019; 6(1): 35-42.
7.   Phanjom P, Sultana A, Sarma H, Ramchiary J, Goswami K, Baishya P. Plant-mediated synthesis of silver nanoparticles using Elaeagnus latifolia leaf extract. Dig. J. Nanomater. Bios. 2012; 7(3): 1117-1123.
8.    Saifuddin N, Wong CW, Yasumira AAN. Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation. J Chem. 2009; 6(1): 61-70.
9.  Anshup, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TRS, et al.  Growth of gold nanoparticles in human cells. Langmuir. 2005; 21(25): 11562-11567.
10.  Jeffryes C, Agathos SN, Rorrer G. Biogenic nanomaterials from photosynthetic microorganisms. Curr Opin Biotechnol. 2015; 33: 23-31.
11.  Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine. 2009; 5(4): 382-386.
12. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol. 2014; 98: 8083-8097.
13. Shahi SK, Patra M. Microbially Synthesized Bioactive nanoparticles and their formulation active against human pathogenic fungi. Rev Adv Mater Sci. 2003; 5(5): 501-509.
14.  Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R. Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation–a novel phenomenon. J Appl Phycol 2009; 21(1): 145-152.
15. Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett. 2010; 3(2): 138-143.
16. Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi CS et al. Green Synthesis of Silver Nanoparticles Using Ocimum Leaf Extract and Their Characterization. Dig J Nanomater Biostruct. 2011; 6(1): 181-186.
17. Renugadevi K, Aswini RV. Microwave irradiation assisted synthesis of silver nanoparticle using Azadirachta indica leaf extract as a reducing agent and in vitro evaluation of its antibacterial and anticancer activity. Int J Nanomat Bio. 2012; 2: 5-10.
18. Comakli S, Sevim C, Kontadakis G, Dogan E, Taghizadehghalehjoughi A, Ozkaraca M, et al. Acute glufosinate-based herbicide treatment in rats leads to increased ocular interleukin-1beta and c-Fos protein levels, as well as intraocular pressure. Toxicol Rep. 2019; 6: 155-160.
19.  Varmazyari A, Taghizadehghalehjoughi A, Sevim C, Baris O, Eser G, Yildirim S, et al. Cadmium sulfide-induced toxicity in the cortex and cerebellum: In vitro and in vivo studies. Toxicol Rep. 2020;7:637-648.
20. Mishra A, Tripathy SK, Wahab R, Jeong S-H, Hwang I, Yang Y-B, et al. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2 C 12 cells. Appl Microbiol Biotechnol. 2011; 92(3): 617-630.
21. El-Shanshoury AE-RR, Elsilk SE, Ebeid ME. Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079T. 2012; 11(31): 7957-7965.
22. Emin NM, Taghizadehghalehjoughi A. Should we use remifentanil in every dose and every case? Journal of clinical and analytical medicine. 2019; 10(1): 21-25.
23. Yang Z, Chen N, Ge R, Qian H, Wang JH. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum. Oncotarget. 2017; 8(42): 72424-72437.
24. Yesilyurt F, Taghizadehghalehjoughi A, and Hacimuftuoglu A. ACTH and Amlodipine Effects on Neuroblastoma and Cortical Neurons. Neuroendocrinology. 2018;107:19-19.
25. Kamalak H, Kamalak A, Taghizadehghalehjoughi A, Hacimuftuoglu A, Nalci KA. Cytotoxic and biological effects of bulk fill composites on rat cortical neuron cells. Odontology. 2018; 106: 377-388.
26. Kamalak H, Kamalak A, Taghizadehghalehjoughi A. Cytotoxic effects of new-generation bulk-fill composites on human dental pulp stem cells. Cell Mol Biol. 2018;64(3):62-71.
27. Mi CC, Wang YY, Zhang JP, Huang HQ, Xu LR, Wang S, et al. Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J Biotechnol. 2011; 153(3-4): 125-132.
28. Dunleavy R, Lu L, Kiely CJ, McIntosh S, Berger BW.  Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties. Proc Natl Acad Sci U S A. 2016; 113(19): 5275-5280.
29. Kashefi K, Lovley DR. Reduction of Fe (III), Mn (IV), and toxic metals at 100oC by Pyrobaculum islandicum. 2000; 66(3): 1050-1056.
30. Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens. Bioinorg Chem Appl. 2014; 2014: 10.
31. Soltani N, Saion E, Hussein MZ, Erfani M, Abedini A, Bahmanrokh G, et al. Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles. Int J Mol Sci. 2012; 13(10): 12242-12258.
32. Zhu X, Kumari D, Huang M, Achal V. Biosynthesis of CdS nanoparticles through microbial induced calcite precipitation. Mater Des. 2016; 98: 209-214.
33. Venegas FA, Saona LA, Monras JP, Ordenes-Aenishanslins N, Giordana MF, Ulloa G, et al.Biological phosphorylated molecules participate in the biomimetic and biological synthesis of cadmium sulphide quantum dots by promoting H2S release from cellular thiols. RSC Adv. 2017; 7(64): 40270-40278.
34.   Li QZ, Sun J, Shen HT, Jia SF, Bai DS, Ma D. CdS nanoparticles of different lengths induce differential responses in some of the liver functions of mice. Bratisl Lek Listy. 2018; 119(2): 75-80.
35. Nisha KD, Navaneethan M, Dhanalakshmi B, Murali KS, Hayakawa Y, Ponnusamy S, et al. Effect of organic-ligands on the toxicity profiles of CdS nanoparticles and functional properties. Colloids Surf B Biointerfaces. 2015; 126: 407-413.
36. Munari M, Sturve J, Frenzilli G, Sanders MB, Brunelli A, Marcomini A, et al.Genotoxic effects of CdS quantum dots and Ag2S nanoparticles in fish cell lines (RTG-2). Mutat Res Genet Toxicol Environ Mutagen. 2014; 775-776: 89-93.
37. Pujalte I, Passagne I, Brouillaud B, Treguer M, Durand E, Ohayon-Courtes C, et al. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol. 2011; 8(10): 1-16.
38. Mandrioli J, Del Rio D, Zini A, Nichelli P, Merelli E, Beltrami D, et al. Total antioxidant capacity of cerebrospinal fluid is decreased in patients with motor neuron disease. Neurosci Lett. 2006; 401(3): 203-208.
39. Souto NS, Braga ACM, Freitas ML, Fighera MR, Royes LFF, Oliveira MS, et al. Aflatoxin B1 reduces non-enzymatic antioxidant defenses and increases protein kinase C activation in the cerebral cortex of young rats. Nutr Neurosci. 2018; 21(4): 268-275.
40. Ozyurt H, Ozyurt B, Sarsilmaz M, Kus I, Songur A, Akyol O.Potential role of some oxidant/antioxidant status parameters in prefrontal cortex of rat brain in an experimental psychosis model and the protective effects of melatonin. Eur Rev Med Pharmacol Sci. 2014; 18(15): 2137-2144.
41. Wang JL, Sun HB, Meng PJ, Wang MM, Tian M, Xiong YM, et al. Dose and time effect of CdTe quantum dots on antioxidant capacities of the liver and kidneys in mice. Int J Nanomedicine. 2017; 12: 6425-6435.