Smart terbinafine recent nano-advances in delivery of terbinafine

Document Type : Review Paper

Authors

1 Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran

Abstract

Terbinafine (TBF) is a drug with well-known antifungal properties effective against skin dermatophyte infections and nail particularly in treatment of pityriasis (tinea) vesicolor due to Malassezia furfur. Terbinafine topical administration is often recommended because commercial conventional terbinafine hydrochloride tablets are more expensive and have potential for significant adverse effects. Only less than 5% of terbinafine is absorbed in conventional topical forms. Novel nano-formulation approaches would be an efficient way to enhance penetration and abortion of topical drugs and eliminate limitations of conventional drug delivery systems. As conclusion, we believe that administering the Terbinafine in nano-formulations, according to different studies, could increases penetration of TBF through stratum corneum and viable epidermis and light the path of nano-structural delivery system in clinical application. Present overview aims to evaluate nano-strategies applied to improve permeation profile and terbinafine skin delivery.

Keywords


1. Akhtar N, Verma A, Pathak K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr Pharm Des. 2015;21(20):2892-2913.
2. Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367-370.
3. Ely JW, Rosenfeld S, Stone MS. Diagnosis and management of tinea infections. Am Fam Physician. 2014;90(10):702-711.
4. Mahmoudabadi AZ, Najafyan M, Moghimipour E, Alwanian M, Seifi Z. Lamisil versus clotrimazole in the treatment of vulvovaginal candidiasis. Iran J Microbiol. 2013;5(1):86-90.
5. Ryder NS. Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol. 1992;126 Suppl(1 992):2-7.
6. Karri VVSNR, Raman SK, Kuppusamy G, Mulukutla S, Ramaswamy S, Malayandi R. Terbinafine hydrochloride loaded nanoemulsion based gel for topical application. J Pharm Investig. 2015;45(1):79-89.
7. Loftsson T. Drug Stability for Pharmaceutical Scientists. In: Drug Stability for Pharmaceutical Scientists; 2014:109-114.
8. Soliman GM. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int J Pharm. 2017;523(1):15-32.
9. EU. Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J Eur Union. 2011;L275(June 2010):38-40.
10. Yang W, Wiederhold NP, Williams RO. Drug delivery strategies for improved azole antifungal action. Expert Opin Drug Deliv. 2008;5(11):1199-1216.
11. Güngör S, Erdal M, Aksu B. New Formulation Strategies in Topical Antifungal Therapy. J Cosmet Dermatological Sci Appl. 2013;03(01):56-65.
12. Glujoy M, Salerno C, Bregni C, Carlucci AM. Percutaneous drug delivery systems for improving antifungal therapy effectiveness: A review. Int J Pharm Pharm Sci. 2014;6(6):8-16.
13. Kumar JR, Muralidharan S, Parasuraman S. Antifungal agents: New approach for novel delivery systems. J Pharm Sci Res. 2014;6(5):229-235.
14. Naumann S, Meyer JP, Kiesow A, Mrestani Y, Wohlrab J, Neubert RHH. Controlled nail delivery of a novel lipophilic antifungal agent using various modern drug carrier systems as well as in vitro and ex vivo model systems. J Control Release. 2014;180(1):60-70.
15. Firooz A, Nafisi S, Maibach HI. Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm. 2015;495(1):599-607.
16. Nafisi S, Schäfer-Korting M, Maibach HI. Perspectives on percutaneous penetration: Silica nanoparticles. Nanotoxicology. 2015;9(5):643-657.
17. Hiranphinyophat S, Otaka A, Asaumi Y, Fujii S, Iwasaki Y. Particle-stabilized oil-in-water emulsions as a platform for topical lipophilic drug delivery. Colloids Surfaces B Biointerfaces. 2021;197(August 2020):111423.
18. Nastiti CMRR, Ponto T, Mohammed Y, Roberts MS, Benson HAE. Novel nanocarriers for targeted topical skin delivery of the antioxidant resveratrol. Pharmaceutics. 2020;12(2).
19. Garcia MT, Ribosa I, Gonzalez JJ, Comelles F. Catanionic mixtures of surface-active ionic liquids and N-lauroyl sarcosinate: Surface adsorption, aggregation behavior and microbial toxicity. J Mol Liq. 2020;318:114040.
20. Lusiana, Müller-Goymann CC. Preparation, characterization, and in vitro permeation study of terbinafine HCl in poloxamer 407-Based thermogelling formulation for topical application. AAPS PharmSciTech. 2011;12(2):496-506.
21. Rajabalaya R, Musa MN, Kifli N, David SR. Oral and transdermal drug delivery systems: Role of lipid-based lyotropic liquid crystals. Drug Des Devel Ther. 2017;11:393-406.
22. Chang CM, Bodmeier R. Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase. Int J Pharm. 1998;173(1-2):51-60.
23. Fernandes CP, Mascarenhas MP, Zibetti FM, et al. HLB value, an important parameter for the development of essential oil phytopharmaceuticals. Rev Bras Farmacogn. 2013;23(1):108-114.
24. Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2).
25. Thapa RK, Baskaran R, Madheswaran T, Kim JO, Yong CS, Yoo BK. In vitro release and skin permeation of tacrolimus from monoolein-based liquid crystalline nanoparticles. J Drug Deliv Sci Technol. 2012;22(6):479-484.
26. Silvestrini AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin Drug Deliv. 2020;17(12):1781-1805. 27. Gao W, Vecchio D, Li J, et al. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano. 2014;8(3):2900-2907. doi:10.1021/nn500110a
28. Kaur LP, Guleri TK. Topical Gel: A Recent Approach for Novel Drug Delivery. Asian J Biomed Pharm Sci. 2013;3(17):1-5.
29. Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49(2):311-322.
30. Patzelt A, Richter H, Knorr F, et al. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150(1):45-48.
31. Lademann J, Richter H, Schanzer S, et al. Penetration and storage of particles in human skin: Perspectives and safety aspects. Eur J Pharm Biopharm. 2011;77(3):465-468.
32. Baspinar Y, Borchert HH. Penetration and release studies of positively and negatively charged nanoemulsions - Is there a benefit of the positive charge? Int J Pharm. 2012;430(1-2):247-252.
33. Gillet A, Compère P, Lecomte F, et al. Liposome surface charge influence on skin penetration behaviour. Int J Pharm. 2011;411(1-2):223-231.
34. Duangjit S, Pamornpathomkul B, Opanasopit P, et al. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int J Nanomedicine. 2014;9(1):2005-2017.
35. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603-616.
36. Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27(7):247-259.
37. Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523-580.
38. Üner M, Karaman EF, Aydoǧmuş Z. Solid lipid nanoparticles and nanostructured lipid carriers of loratadine for topical application: Physicochemical stability and drug penetration through rat skin. Trop J Pharm Res. 2014;13(5):653-660.
39. Kumar A, Pathak K, Bali V. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents. Drug Discov Today. 2012;17(21-22):1233-1241.
40. Mbah CC, Builders PF, Attama A a. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv. 2014;11(1):45-59.
41. Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A. Temoporfin-loaded invasomes: Development, characterization and in vitro skin penetration studies. J Control Release. 2008;127(1):59-69.
42. Mathematical models of drug release. In: Strategies to Modify the Drug Release from Pharmaceutical Systems. Elsevier; 2015:63-86.
43. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;23(12):874-876.
44. Higuchi WI. Analysis of data on the medicament release from ointments. J Pharm Sci. 1962;51(8):802-804.
45. Higuchi T. Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145-1149.
46. Jahanshahi M, Babaei Z. Protein nanoparticle : A unique system as drug delivery vehicles. J Biotechnol. 2008;7(25):4926-4934.
47. Du Y, Lo E, Vidula MK, Khabiry M, Khademhosseini A. Method of Bottom-Up Directed Assembly of Cell-Laden Microgels. Cell Mol Bioeng. 2008;1(2):157-162.
48. Gupta S, Kumar P. Drug Delivery Using Nanocarriers: Indian Perspective. Vol 82.; 2012.
49. Jiang B, Hu L, Gao C, Shen J. Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. Int J Pharm. 2005;304(1-2):220-230.
50. Salavati-Niasari M, Bazarganipour M, Davar F. Nano-sized Cu6Sn5 alloy prepared by a co-precipitation reductive route. Polyhedron. 2010;29(7):1796-1800.
51. Bosselmann S, Nagao M, Chow KT, Williams RO. Influence of Formulation and Processing Variables on Properties of Itraconazole Nanoparticles Made by Advanced Evaporative Precipitation into Aqueous Solution. AAPS PharmSciTech. 2012;13(3):949-960.
52. Dubey A, Prabhu P, Kamath J V. Nano structured lipid carriers: A novel topical drug delivery system. Int J PharmTech Res. 2012;4(2):705-714.
53. Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev. 2012;64(SUPPL.):83-101.
54. Nagavarma BVN, Yadav HKS, Ayaz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles- A review. Asian J Pharm Clin Res. 2012;5(SUPPL. 3):16-23.
55. Brownlee Z, Lynn KD, Thorpe PE, Schroit AJ. A novel “salting-out” procedure for the isolation of tumor-derived exosomes. J Immunol Methods. 2014;407:120-126.
56. Duong-Ly KC, Gabelli SB. Salting out of proteins using ammonium sulfate precipitation. Methods Enzymol. 2014;541:85-94.
57. Gavory C, Durand A, Six JL, Nouvel C, Marie E, Leonard M. Polysaccharide-covered nanoparticles prepared by nanoprecipitation. Carbohydr Polym. 2011;84(1):133-140.
58. Esmaeili A, Saremnia B, Koohian A, Rezazadeh S. Mechanism of nanocapsules of Matricaria recutita L. extract formation by the emulsion-diffusion process. Superlattices Microstruct. 2011;50(4):340-349.
59. Cansell F, Aymonier C. Design of functional nanostructured materials using supercritical fluids. J Supercrit Fluids. 2009;47:508-516.
60. Thakur R, Gupta RB. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Int J Pharm. 2006;308(1-2):190-199.
61. Torino E, De Marco I, Reverchon E. Organic nanoparticles recovery in supercritical antisolvent precipitation. J Supercrit Fluids. 2010;55(1):300-306.
62. Yanai N, Granick S. Directional self-assembly of a colloidal metal-organic framework. Angew Chemie - Int Ed. 2012;51(23):5638-5641.
63. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41:2590.
64. Schlupp P, Blaschke T, Kramer KD, Höltje HD, Mehnert W, Schäfer-Korting M. Drug release and skin penetration from solid lipid nanoparticles and a base cream: A systematic approach from a comparison of three glucocorticoids. Skin Pharmacol Physiol. 2011;24(4):199-209.
65. Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater Sci Eng C. 2013;33(4):1842-1852.
66. Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol. 2014;(January):1-14.
67. Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharm Biopharm. 2014;86(1):7-22.
68. Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharmacy, Cairo Univ. 2015;53(2):147-159.
69. Müller, R.H., Mäder, K. and Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161-177.
70. G. Kakadia P, R. Conway B. Solid Lipid Nanoparticles: A Potential Approach for Dermal Drug Delivery. Am J Pharmacol Sci. 2014;2(5A):1-7.
71. Chen YC, Liu DZ, Liu JJ, Chang TW, Ho HO, Sheu MT. Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int J Nanomedicine. 2012;7:4409-4418.
72. Wavikar P, Vavia P. Nanolipidgel for enhanced skin deposition and improved antifungal activity. AAPS PharmSciTech. 2013;14(1):222-233.
73. S T, P M, V P. SLNs Based on Co-Processed Lipids for Topical Delivery of Terbinafine Hydrochloride. J Pharm Drug Dev. 2014;1(6):1.
74. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter. 2006;18(41):R635-R666.
75. Sonneville-Aubrun O, Simonnet JT, L’Alloret F. Nanoemulsions: A new vehicle for skincare products. Adv Colloid Interface Sci. 2004;108-109:145-149.
76. Mignani S, El Kazzouli S, Bousmina M, Majoral JP. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Adv Drug Deliv Rev. 2013;65(10):1316-1330.
77. Ravi Kumar MN. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1-27.
78. Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci. 2006;31(7):603-632.
79. Ozcan I, Abaci O, Uztan AH, et al. Enhanced topical delivery of terbinafine hydrochloride with chitosan hydrogels. AAPS PharmSciTech. 2009;10(3):1024-1031.
80. Carrillo C, Suñé JM, Pérez-Lozano P, García-Montoya E, Sarrate R, Fàbregas A, et al. Chitosan nanoparticles as non-viral gene delivery systems: Determination of loading efficiency. Biomed Pharmacother. 2014;68(6):775-783.
81. Tavano L, Alfano P, Muzzalupo R, De Cindio B. Niosomes vs microemulsions: New carriers for topical delivery of Capsaicin. Colloids Surfaces B Biointerfaces. 2011;87(2):333-339.
82. Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34(7):945-953.
83. Fang JY, Hong CT, Chiu WT, Wang YY. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm. 2001;219(1-2):61-72.
84. Marwa A, Omaima S, Hanna E-G, Mohammed A. PREPARATION AND IN-VITRO EVALUATION OF DICLOFENAC SODIUM NIOSOMAL FORMULATIONS. J Pharm Sci Res. 2013;4(5):1689-1699.
85. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes - Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J Control Release. 2000;65(3):403-418.
86. Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res. 2010;1(3):274.
87. Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine Nanotechnology, Biol Med. 2012;8(4):489-496.
88. Francesconi G, Francesconi do Valle AC, Passos SL, et al. Comparative Study of 250 mg/day Terbinafine and 100 mg/day Itraconazole for the Treatment of Cutaneous Sporotrichosis. Mycopathologia. 2011;171(5):349-354.
89. Patel MM, Vora ZM. Formulation development and optimization of transungual drug delivery system of terbinafine hydrochloride for the treatment of onychomycosis. Drug Deliv Transl Res. 2016.
90. Zhang JP, Wei YH, Zhou Y, Li YQ, Wu XA. Ethosomes, binary ethosomes and transfersomes of terbinafine hydrochloride: A comparative study. Arch Pharm Res. 2012;35(1):109-117.
91. Cevc G, Gebauer D, Stieber J, Schätzlein A, Blume G. Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta - Biomembr. 1998;1368(2):201-215.
92. Gupta A, Aggarwal G, Singla S, Arora R. Transfersomes: A novel vesicular carrier for enhanced transdermal delivery of sertraline: Development, characterization, and performance evaluation. Sci Pharm. 2012;80(4):1061-1080.
93. Ghannoum M, Isham N, Henry W, Kroon HA, Yurdakul S. Evaluation of the morphological effects of TDT 067 (terbinafine in transfersome) and conventional terbinafine on dermatophyte hyphae in vitro and in vivo. Antimicrob Agents Chemother.
94. Gupta A. New pharmacotherapy for the treatment of onychomycosis: an update. Expert Opin Pharmacother. 2015;16(9):1347-1368.

cgi?T=JS&PAGE=reference&D=emedx&NEWS=N&AN=2015125495.
2.     Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367-370. doi:10.1038/nature12171
3.     Ely JW, Rosenfeld S, Stone MS. Diagnosis and management of tinea infections. Am Fam Physician. 2014;90(10):702-711.
4.     Mahmoudabadi AZ, Najafyan M, Moghimipour E, Alwanian M, Seifi Z. Lamisil versus clotrimazole in the treatment of vulvovaginal candidiasis. Iran J Microbiol. 2013;5(1):86-90.
5.     Ryder NS. Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol. 1992;126 Suppl(1 992):2-7. doi:10.1111/j.1365-2133.1992.tb00001.x
6.     Karri VVSNR, Raman SK, Kuppusamy G, Mulukutla S, Ramaswamy S, Malayandi R. Terbinafine hydrochloride loaded nanoemulsion based gel for topical application. J Pharm Investig. 2015;45(1):79-89. doi:10.1007/s40005-014-0149-9
7.     Loftsson T. Drug Stability for Pharmaceutical Scientists. In: Drug Stability for Pharmaceutical Scientists. ; 2014:109-114. doi:10.1016/B978-0-12-411548-4.00005-2
8.     Soliman GM. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int J Pharm. 2017;523(1):15-32. doi:10.1016/j.ijpharm.2017.03.019
9.     EU. Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J Eur Union. 2011;L275(June 2010):38-40. doi:10.2777/13162
10.     Yang W, Wiederhold NP, Williams RO. Drug delivery strategies for improved azole antifungal action. Expert Opin Drug Deliv. 2008;5(11):1199-1216. doi:10.1517/17425240802457188
11.     Güngör S, Erdal M, Aksu B. New Formulation Strategies in Topical Antifungal Therapy. J Cosmet Dermatological Sci Appl. 2013;03(01):56-65. doi:10.4236/jcdsa.2013.31A009
12.     Glujoy M, Salerno C, Bregni C, Carlucci AM. Percutaneous drug delivery systems for improving antifungal therapy effectiveness: A review. Int J Pharm Pharm Sci. 2014;6(6):8-16. http://www.scopus.com/inward/record.url?eid=2-s2.0-84903907297&partnerID=40&md5=7dd62762bc146a80bca5742177284aef.
13.     Kumar JR, Muralidharan S, Parasuraman S. Antifungal agents: New approach for novel delivery systems. J Pharm Sci Res. 2014;6(5):229-235.
14.     Naumann S, Meyer JP, Kiesow A, Mrestani Y, Wohlrab J, Neubert RHH. Controlled nail delivery of a novel lipophilic antifungal agent using various modern drug carrier systems as well as in vitro and ex vivo model systems. J Control Release. 2014;180(1):60-70. doi:10.1016/j.jconrel.2014.02.013
15.     Firooz A, Nafisi S, Maibach HI. Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm. 2015;495(1):599-607. doi:10.1016/j.ijpharm.2015.09.015
16.     Nafisi S, Schäfer-Korting M, Maibach HI. Perspectives on percutaneous penetration: Silica nanoparticles. Nanotoxicology. 2015;9(5):643-657. doi:10.3109/17435390.2014.958115
17.     Hiranphinyophat S, Otaka A, Asaumi Y, Fujii S, Iwasaki Y. Particle-stabilized oil-in-water emulsions as a platform for topical lipophilic drug delivery. Colloids Surfaces B Biointerfaces. 2021;197(August 2020):111423. doi:10.1016/j.colsurfb.2020.111423
18.     Nastiti CMRR, Ponto T, Mohammed Y, Roberts MS, Benson HAE. Novel nanocarriers for targeted topical skin delivery of the antioxidant resveratrol. Pharmaceutics. 2020;12(2). doi:10.3390/pharmaceutics12020108
19.     Garcia MT, Ribosa I, Gonzalez JJ, Comelles F. Catanionic mixtures of surface-active ionic liquids and N-lauroyl sarcosinate: Surface adsorption, aggregation behavior and microbial toxicity. J Mol Liq. 2020;318:114040. doi:10.1016/j.molliq.2020.114040
20.     Lusiana, Müller-Goymann CC. Preparation, characterization, and in vitro permeation study of terbinafine HCl in poloxamer 407-Based thermogelling formulation for topical application. AAPS PharmSciTech. 2011;12(2):496-506. doi:10.1208/s12249-011-9611-4
21.     Rajabalaya R, Musa MN, Kifli N, David SR. Oral and transdermal drug delivery systems: Role of lipid-based lyotropic liquid crystals. Drug Des Devel Ther. 2017;11:393-406. doi:10.2147/DDDT.S103505
22.     Chang CM, Bodmeier R. Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase. Int J Pharm. 1998;173(1-2):51-60. doi:10.1016/S0378-5173(98)00180-X
23.     Fernandes CP, Mascarenhas MP, Zibetti FM, et al. HLB value, an important parameter for the development of essential oil phytopharmaceuticals. Rev Bras Farmacogn. 2013;23(1):108-114. doi:10.1590/S0102-695X2012005000127
24.     Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2). doi:10.3390/pharmaceutics11020055
25.     Thapa RK, Baskaran R, Madheswaran T, Kim JO, Yong CS, Yoo BK. In vitro release and skin permeation of tacrolimus from monoolein-based liquid crystalline nanoparticles. J Drug Deliv Sci Technol. 2012;22(6):479-484. doi:10.1016/S1773-2247(12)50084-5
26.     Silvestrini AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin Drug Deliv. 2020;17(12):1781-1805. doi:10.1080/17425247.2020.1819979
27.     Gao W, Vecchio D, Li J, et al. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano. 2014;8(3):2900-2907. doi:10.1021/nn500110a
28.     Kaur LP, Guleri TK. Topical Gel: A Recent Approach for Novel Drug Delivery. Asian J Biomed Pharm Sci. 2013;3(17):1-5. http://www.jbiopharm.com/index.php/ajbps/article/view/183.
29.     Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49(2):311-322. doi:10.1016/j.ejps.2013.03.013
30.     Patzelt A, Richter H, Knorr F, et al. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150(1):45-48. doi:10.1016/j.jconrel.2010.11.015
31.     Lademann J, Richter H, Schanzer S, et al. Penetration and storage of particles in human skin: Perspectives and safety aspects. Eur J Pharm Biopharm. 2011;77(3):465-468. doi:10.1016/j.ejpb.2010.10.015
32.     Baspinar Y, Borchert HH. Penetration and release studies of positively and negatively charged nanoemulsions - Is there a benefit of the positive charge? Int J Pharm. 2012;430(1-2):247-252. doi:10.1016/j.ijpharm.2012.03.040
33.     Gillet A, Compère P, Lecomte F, et al. Liposome surface charge influence on skin penetration behaviour. Int J Pharm. 2011;411(1-2):223-231. doi:10.1016/j.ijpharm.2011.03.049
34.     Duangjit S, Pamornpathomkul B, Opanasopit P, et al. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int J Nanomedicine. 2014;9(1):2005-2017. doi:10.2147/IJN.S60674
35.     Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603-616. doi:10.1016/j.addr.2007.05.010
36.     Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27(7):247-259. doi:10.3109/09687688.2010.522203
37.     Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523-580. doi:7a0c3bee026fb778,313cd9ee34e9e406 [pii]
38.     Üner M, Karaman EF, Aydoǧmuş Z. Solid lipid nanoparticles and nanostructured lipid carriers of loratadine for topical application: Physicochemical stability and drug penetration through rat skin. Trop J Pharm Res. 2014;13(5):653-660. doi:10.4314/tjpr.v13i5.1
39.     Kumar A, Pathak K, Bali V. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents. Drug Discov Today. 2012;17(21-22):1233-1241. doi:10.1016/j.drudis.2012.06.013
40.     Mbah CC, Builders PF, Attama A a. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv. 2014;11(1):45-59. doi:10.1517/17425247.2013.860130
41.     Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A. Temoporfin-loaded invasomes: Development, characterization and in vitro skin penetration studies. J Control Release. 2008;127(1):59-69. doi:10.1016/j.jconrel.2007.12.013
42.     Mathematical models of drug release. In: Strategies to Modify the Drug Release from Pharmaceutical Systems. Elsevier; 2015:63-86. doi:10.1016/B978-0-08-100092-2.00005-9
43.     Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;23(12):874-876. doi:10.1248/cpb.23.3288
44.     Higuchi WI. Analysis of data on the medicament release from ointments. J Pharm Sci. 1962;51(8):802-804. doi:10.1002/jps.2600510825
45.     Higuchi T. Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145-1149. doi:10.1002/jps.2600521210
46.     Jahanshahi M, Babaei Z. Protein nanoparticle : A unique system as drug delivery vehicles. J Biotechnol. 2008;7(25):4926-4934. doi:10.4314/ajb.v7i25.59701
47.     Du Y, Lo E, Vidula MK, Khabiry M, Khademhosseini A. Method of Bottom-Up Directed Assembly of Cell-Laden Microgels. Cell Mol Bioeng. 2008;1(2):157-162. doi:10.1007/s12195-008-0020-z
48.     Gupta S, Kumar P. Drug Delivery Using Nanocarriers: Indian Perspective. Vol 82.; 2012. doi:10.1007/s40011-012-0080-7
49.     Jiang B, Hu L, Gao C, Shen J. Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. Int J Pharm. 2005;304(1-2):220-230. doi:10.1016/j.ijpharm.2005.08.008
50.     Salavati-Niasari M, Bazarganipour M, Davar F. Nano-sized Cu6Sn5 alloy prepared by a co-precipitation reductive route. Polyhedron. 2010;29(7):1796-1800. doi:10.1016/j.poly.2010.02.035
51.     Bosselmann S, Nagao M, Chow KT, Williams RO. Influence of Formulation and Processing Variables on Properties of Itraconazole Nanoparticles Made by Advanced Evaporative Precipitation into Aqueous Solution. AAPS PharmSciTech. 2012;13(3):949-960. doi:10.1208/s12249-012-9817-0
52.     Dubey A, Prabhu P, Kamath J V. Nano structured lipid carriers: A novel topical drug delivery system. Int J PharmTech Res. 2012;4(2):705-714.
53.     Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev. 2012;64(SUPPL.):83-101. doi:10.1016/j.addr.2012.09.021
54.     Nagavarma BVN, Yadav HKS, Ayaz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles- A review. Asian J Pharm Clin Res. 2012;5(SUPPL. 3):16-23.
55.     Brownlee Z, Lynn KD, Thorpe PE, Schroit AJ. A novel “salting-out” procedure for the isolation of tumor-derived exosomes. J Immunol Methods. 2014;407:120-126. doi:10.1016/j.jim.2014.04.003
56.     Duong-Ly KC, Gabelli SB. Salting out of proteins using ammonium sulfate precipitation. Methods Enzymol. 2014;541:85-94. doi:10.1016/B978-0-12-420119-4.00007-0
57.     Gavory C, Durand A, Six JL, Nouvel C, Marie E, Leonard M. Polysaccharide-covered nanoparticles prepared by nanoprecipitation. Carbohydr Polym. 2011;84(1):133-140. doi:10.1016/j.carbpol.2010.11.012
58.     Esmaeili A, Saremnia B, Koohian A, Rezazadeh S. Mechanism of nanocapsules of Matricaria recutita L. extract formation by the emulsion-diffusion process. Superlattices Microstruct. 2011;50(4):340-349. doi:10.1016/j.spmi.2011.07.012
59.     Cansell F, Aymonier C. Design of functional nanostructured materials using supercritical fluids. J Supercrit Fluids. 2009;47:508-516. doi:10.1016/j.supflu.2008.10.002
60.     Thakur R, Gupta RB. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Int J Pharm. 2006;308(1-2):190-199. doi:10.1016/j.ijpharm.2005.11.005
61.     Torino E, De Marco I, Reverchon E. Organic nanoparticles recovery in supercritical antisolvent precipitation. J Supercrit Fluids. 2010;55(1):300-306. doi:10.1016/j.supflu.2010.06.001
62.     Yanai N, Granick S. Directional self-assembly of a colloidal metal-organic framework. Angew Chemie - Int Ed. 2012;51(23):5638-5641. doi:10.1002/anie.201109132
63.     Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41:2590. doi:10.1039/c1cs15246g
64.     Schlupp P, Blaschke T, Kramer KD, Höltje HD, Mehnert W, Schäfer-Korting M. Drug release and skin penetration from solid lipid nanoparticles and a base cream: A systematic approach from a comparison of three glucocorticoids. Skin Pharmacol Physiol. 2011;24(4):199-209. doi:10.1159/000324053
65.     Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater Sci Eng C. 2013;33(4):1842-1852. doi:10.1016/j.msec.2013.01.037
66.     Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol. 2014;(January):1-14. doi:10.3109/21691401.2014.909822
67.     Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharm Biopharm. 2014;86(1):7-22. doi:10.1016/j.ejpb.2013.08.013
68.     Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharmacy, Cairo Univ. 2015;53(2):147-159. doi:10.1016/j.bfopcu.2015.10.001
69.     M??ller RH, M??der K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161-177. doi:10.1016/S0939-6411(00)00087-4
70.     G. Kakadia P, R. Conway B. Solid Lipid Nanoparticles: A Potential Approach for Dermal Drug Delivery. Am J Pharmacol Sci. 2014;2(5A):1-7. doi:10.12691/ajps-2-5A-1
71.     Chen YC, Liu DZ, Liu JJ, Chang TW, Ho HO, Sheu MT. Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int J Nanomedicine. 2012;7:4409-4418. doi:10.2147/IJN.S33682
72.     Wavikar P, Vavia P. Nanolipidgel for enhanced skin deposition and improved antifungal activity. AAPS PharmSciTech. 2013;14(1):222-233. doi:10.1208/s12249-012-9908-y
73.     S T, P M, V P. SLNs Based on Co-Processed Lipids for Topical Delivery of Terbinafine Hydrochloride. J Pharm Drug Dev. 2014;1(6):1. doi:10.15744/2348-9782.1.604
74.     Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter. 2006;18(41):R635-R666. doi:10.1088/0953-8984/18/41/R01
75.     Sonneville-Aubrun O, Simonnet JT, L’Alloret F. Nanoemulsions: A new vehicle for skincare products. Adv Colloid Interface Sci. 2004;108-109:145-149. doi:10.1016/j.cis.2003.10.026
76.     Mignani S, El Kazzouli S, Bousmina M, Majoral JP. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Adv Drug Deliv Rev. 2013;65(10):1316-1330. doi:10.1016/j.addr.2013.01.001
77.     Ravi Kumar MN. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1-27. doi:10.1016/S1381-5148(00)00038-9
78.     Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci. 2006;31(7):603-632. doi:http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001
79.     Ozcan I, Abaci O, Uztan AH, et al. Enhanced topical delivery of terbinafine hydrochloride with chitosan hydrogels. AAPS PharmSciTech. 2009;10(3):1024-1031. doi:10.1208/s12249-009-9299-x
80.     Carrillo C, Su???? JM, P??rez-Lozano P, et al. Chitosan nanoparticles as non-viral gene delivery systems: Determination of loading efficiency. Biomed Pharmacother. 2014;68(6):775-783. doi:10.1016/j.biopha.2014.07.009
81.     Tavano L, Alfano P, Muzzalupo R, De Cindio B. Niosomes vs microemulsions: New carriers for topical delivery of Capsaicin. Colloids Surfaces B Biointerfaces. 2011;87(2):333-339. doi:10.1016/j.colsurfb.2011.05.041
82.     Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34(7):945-953. doi:10.1248/bpb.34.945
83.     Fang JY, Hong CT, Chiu WT, Wang YY. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm. 2001;219(1-2):61-72. doi:10.1016/S0378-5173(01)00627-5
84.     Marwa A, Omaima S, Hanna E-G, Mohammed A. PREPARATION AND IN-VITRO EVALUATION OF DICLOFENAC SODIUM NIOSOMAL FORMULATIONS. J Pharm Sci Res. 2013;4(5):1689-1699. doi:10.1017/CBO9781107415324.004
85.     Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes - Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J Control Release. 2000;65(3):403-418. doi:10.1016/S0168-3659(99)00222-9
86.     Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res. 2010;1(3):274. doi:10.4103/0110-5558.72415
87.     Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine Nanotechnology, Biol Med. 2012;8(4):489-496. doi:10.1016/j.nano.2011.07.004
88.     Francesconi G, Francesconi do Valle AC, Passos SL, et al. Comparative Study of 250 mg/day Terbinafine and 100 mg/day Itraconazole for the Treatment of Cutaneous Sporotrichosis. Mycopathologia. 2011;171(5):349-354. doi:10.1007/s11046-010-9380-8
89.     Patel MM, Vora ZM. Formulation development and optimization of transungual drug delivery system of terbinafine hydrochloride for the treatment of onychomycosis. Drug Deliv Transl Res. 2016. doi:10.1007/s13346-016-0287-x
90.     Zhang JP, Wei YH, Zhou Y, Li YQ, Wu XA. Ethosomes, binary ethosomes and transfersomes of terbinafine hydrochloride: A comparative study. Arch Pharm Res. 2012;35(1):109-117. doi:10.1007/s12272-012-0112-0
91.     Cevc G, Gebauer D, Stieber J, Schätzlein A, Blume G. Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta - Biomembr. 1998;1368(2):201-215. doi:10.1016/S0005-2736(97)00177-6
92.     Gupta A, Aggarwal G, Singla S, Arora R. Transfersomes: A novel vesicular carrier for enhanced transdermal delivery of sertraline: Development, characterization, and performance evaluation. Sci Pharm. 2012;80(4):1061-1080. doi:10.3797/scipharm.1208-02
93.     Ghannoum M, Isham N, Henry W, Kroon HA, Yurdakul S. Evaluation of the morphological effects of TDT 067 (terbinafine in transfersome) and conventional terbinafine on dermatophyte hyphae in vitro and in vivo. Antimicrob Agents Chemother. 2012;56(5):2530-2534. doi:10.1128/AAC.05998-11
94.     Gupta A. New pharmacotherapy for the treatment of onychomycosis: an update. Expert Opin Pharmacother. 2015;16(9):1347-1368. doi:10.1517/14656566.2015.1047343