A review on theranostic applications of iodine nanoparticles: Recent findings and perspectives

Document Type : Review Paper

Authors

1 Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran

2 Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Application of nanoparticles have in the core of researchers attention for both imaging and therapy of cancers. This review article aimed to prepare an outline on recent applications of iodine nanoparticles (INPs) as theranostic agents in both diagnosis and therapies. Among various strategies are used in treatment of cancers, radiotherapy with radiopharmaceutical agents especially radioisotope of iodine displays satisfactory results for numerous types of cancers. In recent years, new investigations were done in order to develop the novel structure of INPs. These nanoprobes could act as efficient theranostic purposes. Iodine nanoparticles may be applied in nuclear medicine imaging and may be effective with mega voltage (MV) photons in cancer therapy, but this remains to be tested with different cancer cells. By using INPs, effective steps can be taken in the future in both diagnosis and treatment of cancers. This review emphasized the recent research findings on the application of INPs in medical imaging and therapeutic of cancers. The current challenges and the perspectives for their future applications were also represented and discussed.

Keywords


1. Shahbazi-Gahrouei D, Moradi Khaniabadi P, Shahbazi-Gahrouei S, Khorasani AM,  Mahmoudi F. A literature review on multimodality molecular imaging nanoprobes for cancer detection. Polish J Med Phys Eng. 2019;25(2):57-68.
2.    Baselga J, Bhardwaj N, Cantley LC, DeMatteo R, DuBois RN, Foti M, et al. AACR Cancer Progress Report 2015. Clin Cancer Res. 2015;21(19): S1–S128.
3.    Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, Motaghi H, Mehrgardi MA, Javanmard SH. AS1411 Aptamer targeted gold nanoclusters effect on enhancement of radiation therapy efficacy in 4T1 breast tumor-bearing mice. Nanomed. 2018;13(20):2563-2578.
4.    Safari A, Sarikhani A, Shahbazi-Gahrouei D, Alamzadeh Z, Beik J, Shiralizadeh Dezfuli A, et al. Optimal scheduling of the nanoparticle-mediated cancer photo-thermo-radiotherapy. Photodiagnosis and Photodynamic Therapy PDPDT. 2020;32:102061.
5.    Shahbazi-Gahrouei D, Moradi Khaniabadi P, Moradi Khaniabadi B, Shahbazi-Gahrouei S. Medical imaging modalities using nanoprobes for cancer diagnosis: A literature review on recent findings. J Res Med Sci. 2019; 24:38.
6.    Almasi T,  Gholipour N,  Akhlaghi M, Mokhtari Kheirabadi A, Mazidi SM, Hosseini SH, et al. Development of Ga-68 radiolabeled DOTA functionalized and acetylated PAMAM dendrimer-coated iron oxide nanoparticles as PET/MR dual-modal imaging agent. INT J POLYM MATER PO. 2020; doi:10.1080/00914037.2020.1785451.
7.    Fatahian S, Shahbazi-Gahrouei D, Pouladain M, Yousefi MH, Amiri GR, Noori A. Biodistribution and toxicity assessment of radiolabeled and DMSA coated ferrite nanoparticles in mice. J Radioanal Nucl Chem. 2012;293(3):915-921.     
8.    Agrawal A, Rangarajan V, Shah S, Puranik A, Purandare N. MIBG (Metaiodobenzylguanidine) Theranostics in pediatric and adult malignancies. BJR. 2018;91(1091).
9.    Morgenstern A, Apostolidis C, Kratochwil C, Sathekge M, Krolicki L, Bruchertseifer F. An overview of targeted alpha therapy with 225Actinium and 213Bismuth. Curr Radiopharm. 2018;11(3):200-208.
10.    Walrand S, Hesse M, Renaud L, Jamar F. The impact of image reconstruction bias on PET/CT 90Y dosimetry after radioembolization. JNM. 2015;56(3):494-495.
11.    Aminolroayaei F, Shahbazi-Gahrouei D, Shahbazi-Gahrouei S, Rasouli N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnol 2021;15(2):1-10.  
12.    Mandel SJ, Shankar LK, Benard F, Yamamoto A, Alavi A. Superiority of Iodine-123 Compared with Iodine-131 scanning for thyroid remnants in patients with differentiated thyroid cancer. Clinical Nucl Med.2001; 26(1):6-9.
13.    Urhan M, Dadparvar S, Mavi A, Houseni M, Chamroonrat W, Alavi A, et al. Iodine-123 as a diagnostic imaging agent in differentiated thyroid carcinoma: A comparison with iodine-131 post-treatment scanning and serum thyroglobulin measurement. EJNMMI. 2007;34(7):1012-1017.
14.    Jochen S. The production of [124I]iodine and [86Y]yttrium EJNMMI. 2011;38:S4-9.
15.    Koehler L, Gagnon K, McQuarrie S, Wuest F. Iodine-124: A promising positron emitter for organic PET chemistry. Molecules. 2010; 15(4):2686-2718.
16.    Hertz S, Roberts A. Radioactive iodine in the study of thyroid physiology: VII. The use of radioactive iodine therapy in hyperthyroidism. JAMA. 1946;131(2):81-86.
17.    Yi X, Yang K, Liang C, Zhong X, Ning P, Song G, et al. Imaging‐guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using iodine‐131‐doped copper sulfide nanoparticles. Adv Funct Mater. 2015;25(29):4689-4699.
18.    Chu KF and Dupuy DE.  Thermal ablation of tumors: biological mechanisms and advances in therapy.  Nat Rev Cancer. 2014; 14(3):199-208.    
19.    Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114 (21):10869-10939.       
20.    Liu X, Gao C, Gu J, Jiang Y, Yang X, Li S, et al. Hyaluronic acid stabilized iodine-containing nanoparticles with Au nanoshell coating for X-ray CT imaging and photothermal therapy of tumors. ACS Applied Materials & Interfaces. 2016;8(41):27622-27631.
21.    Lee SB, Lee JE, Cho SJ, Chin J, Kim SK, Lee IK, et al. Crushed gold shell nanoparticles labeled with radioactive iodine as a theranostic nanoplatform for macrophage-mediated photothermal therapy. Nano-Micro Letters. 2019;11(1):1-14.
22.    Zou Y, Wei Y, Sun Y, Bao J, Yao F, Li Z, et al. Cyclic RGD-functionalized and disulfide-crosslinked iodine-rich polymersomes as a robust and smart theranostic agent for targeted CT imaging and chemotherapy of tumor. Theranostics. 2019; 9(26):8061.
23.    Zhou W, Chen Y, Zhang Y, Xin X, Li R, Xie C, et al. Iodine‐rich semiconducting polymer nanoparticles for CT/Fluorescence dual‐modal imaging‐guided enhanced photodynamic therapy. Small. 2020; 16(5):1905641.
24.    Fass L. Imaging and cancer: A review. Mol Oncol. 2008; 2(2):115-152.
25.    Yang K, Zhu L, Nie L, Sun X, Cheng L, Wu C, et al. Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles. Theranostics. 2014;4(2):134-141.    
26.    Vo-Dinh T, Wang HN, Scaffidi J. Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics. 2010; 3(1–2):89–102.      
27.    Simone EA, Zern BJ, Chacko AM, Mikitsh JL, Blankemeyer ER, Muro S, et al. Endothelial targeting of polymeric nanoparticles stably labeled with the PET imaging radioisotope iodine-124. Biomaterials. 2012;33(21):5406-5413.
28.    Kim YH, Jeon J, Hong SH, Rhim WK, Lee YS, Youn H, et al. Tumor targeting and imaging using cyclic RGD‐PEGylated gold nanoparticle probes with directly conjugated iodine‐125. Small. 2011;7(14):2052-2060.
29.    Chrastina A, Schnitzer JE. Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomedicine. 2010; 5:653.
30.    Zhang Y, Zhang Y, Yin L, Xia X, Hu F, Liu Q, et al. Synthesis and bioevaluation of iodine-131 directly labeled cyclic RGD-pegylated gold nanorods for tumor-targeted imaging. Contrast Media Mol Imaging. 2017; 2017.
31.    Su H, Liao Y, Wu F, Sun X, Liu H, Wang K, et al. Cetuximab-conjugated iodine doped carbon dots as a dual fluorescent/CT probe for targeted imaging of lung cancer cells. Colloids Surf B Biointerfaces. 2018;170:194-200.
32.    Schipper ML, Cheng Z, Lee SW, Bentolila LA, Iyer G, Rao J, et al. microPET-based biodistribution of quantum dots in living mice. J Nucl Med. 2007;48(9):1511-1518.       
33.    Han W, Yang W, Gao F, Cai P, Wang J, Wang S, et al. Iodine-124 labeled gold nanoclusters for positron emission tomography imaging in lung cancer model. J Nanosci Nanotechnol. 2020; 20(3):1375-82.
34.    Clark DP, Ghaghada K, Moding EJ, Krisch DG, Badea CT. In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT. Phys Med Biol. 2013;58:1683-1704.     
35.    Fung MC, Bowen DL. Silver products for medical indications: risk benefit assessment. Journal of Toxicology: Clinical Toxicology. 1996;34(1):119-126.  
36.    Garza-Ocanas L, Ferrer DA, Burt J, Diaz-Torres LA, Cabrera MR, Rodriguez VT, et al. Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics. 2010;2:204-210.     
37.    Ashton JR, Clark DP, Moding EJ, Ghaghada K, Kirsch DG, et al. Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: A Validation Study. PLoS One. 2014; 9(2):e88129.
38.    Barton MB, Jacob S, Shafiq J, Wong K, Thompson SR, Hanna TP, et al. Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother Oncol. 2014;112(1):140-144.
39.    Rose JH, Norman A, Ingram M, Aoki C, Solberg T, Mesa A. First radiotherapy of human metastatic brain tumors delivered by a computerized tomography scanner (CTRX). Int J Radiat Oncol Biol Phys. 1999;45(5):1127-1132.
40.    Adam JF, Balosso J, Renier M, Elleaume H, Estève F, Berkvens P, et al. Synchrotron stereotactic radiation therapy: A report on phase 1/2 clinical trial achievements, ongoing developments, and long-term prospects. Int J Radiat Oncol Biol Phys. 2016;96(2):E624-E625.    
41.    Hainfeld JF, Ridwan SM, Stanishevskiy Y, Smilowitz NR, Davis J, Smilowitz HM. Small, long blood half-life iodine nanoparticle for vascular and tumor imaging. Sci Rep. 2018; 8(1):1-10.      
42.    Hainfeld JF, Ridwan SM, Stanishevskiy Y, Panchal R, Slatkin DN, Smilowitz HM. Iodine nanoparticles enhance radiotherapy of intracerebral human glioma in mice and increase efficacy of chemotherapy. Sci Rep. 2019;9(1):1-12.
43.    Hainfeld JF, Ridwan SM, Stanishevskiy FY, Smilowitz HM. Iodine nanoparticle radiotherapy of human breast cancer growing in the brains of athymic mice. Sci Rep. 2020; 10(1):1-10.     
44.    Li W, Sun D, Li N, Shen Y, Hu Y, Tan J. Therapy of cervical cancer using 131I-labeled nanoparticles. J Int Med Res. 2018;46(6):2359-2370.
45.    Li Z, Wang B, Zhang Z, Wang B, Xu Q, Mao, W, et al. Radionuclide imaging-guided Chemo-radioisotope synergistic therapy using a 131I-labeled polydopamine multifunctional nanocarrier. Mol Ther. 2018;26(5):1385-1393.