Anti-tumor activity of nanoliposomes containing crude extract of saffron in mice bearing C26 colon carcinoma

Document Type : Research Paper


1 Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

4 Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

5 Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran


Objective(s): Saffron, the dehydrated stigma of the Crocus sativus L. flower, has been reputed as an effective anticancer and chemopreventive agent in cancer therapy. This study aimed to design PEGylated nanoliposomes containing crude extract of saffron for the treatment of cancer.
Materials and Methods: Various PEGylated nanoliposomes containing 25 mg/ml aqueous extract of saffron were prepared using the thin lipid film method. The characterization of liposomes was indicated by their size, in vitro cytotoxicity, and in vivo therapeutic efficacy against C26 tumor-bearing mice. 
Results:  By increasing cholesterol levels, the IC50 values of the formulations increased. Liposome characterization illustrated the properties of formulation of choice, as follows: Z-average size: 73.7 ± 1.3 nm; PDI: 0.103 ± 0.035; zeta potential: -20.8 mV ± 3.7; % encapsulation: 91 ± 0.059, % release after 168 hours in 30% FBS: 16.26 ± 0.01.
Conclusion: Treating tumor-bearing mice with the selected saffron liposomes indicated that, for the first time, the i.v. injection of nano-liposomal saffron at a dose of 300 mg/kg significantly increased the anti-tumor property compared to the negative control group, while no significant difference was observed compared with aqueous extract of saffron. Hence, to achieve an optimal formulation for human use, the formulation merits further study.


1.    Xue X. [Cultivation of Crocus sativus]. Zhong yao tong bao (Beijing, China: 1981). 1982;7(4):3-4.
2.    Abdullaev FI. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med. 2002;227(1):20-25.
3.    Aung H, Wang C, Ni M, Fishbein A, Mehendale S, Xie J, et al. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol. 2007;29(3):175.
4.    Escribano J, Alonso G-L, Coca-Prados M, Fernández J-A. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett. 1996;100(1):23-30.
5.    Garc-Olmo DC, Riese HH, Escribano J, Onta˜´ n J, Fernandez JA, Atiénzar M, et al. Effects of long-term treatment of colon adenocarcinoma with crocin, a carotenoid from saffron (Crocus sativus L.): an experimental study in the rat. Nutr Cancer. 1999;35(2):120-126.
6.    Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H, Malaekeh-Nikouei B. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm Biol. 2011;49(10):1039-1045.
7.    Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Med. 2013;79(6):447-451.
8.    Malaekeh‐Nikouei B, Mousavi SH, Shahsavand S, Mehri S, Nassirli H, Moallem SA. Assessment of cytotoxic properties of safranal and nanoliposomal safranal in various cancer cell lines. Phytother Res. 2013;27(12):1868-1873.
9.    Hosseinzadeh H, Noraei NB. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res. 2009;23(6):768-774.
10.    Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H. Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of α-tocopherol. Neurosci Lett. 2004;362(1):61-64.
11.    WINTERHALTER P, STRAUBINGER M. Saffron—renewed interest in an ancient spice. Food Rev Int. 2000;16(1):39-59.
12.    Tarantilis P, Morjani H, Polissiou M, Manfait M. Inhibition of growth and induction of differentiation of promyelocytic leukemia (HL-60) by carotenoids from Crocus sativus L. Anticancer Res. 1993;14(5A):1913-1918.
13.    Hosseinzadeh H, Karimi G, Niapoor M, editors. Antidepressant effect of Crocus sativus L. stigma extracts and their constituents, crocin and safranal, in mice. I International Symposium on Saffron Biology and Biotechnology 650; 2003.
14.    Wang Y, Han T, Zhu Y, Zheng C-J, Ming Q-L, Rahman K, et al. Antidepressant properties of bioactive fractions from the extract of Crocus sativus L. J Nat Med. 2010;64(1):24-30.
15.    Hosseinzadeh H, Ziaei T. Effects of Crocus sativus stigma extract and its constituents, crocin and safranal, on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. J Med Plants. 2006;3(19):40-50.
16.    Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long‐term potentiation. Phytother Res. 2000;14(3):149-152.
17.    Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol. 2011;667(1):222-229.
18.    Pitsikas N, Zisopoulou S, Tarantilis PA, Kanakis CD, Polissiou MG, Sakellaridis N. Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats’ memory. Behav Brain Res. 2007;183(2):141-146.
19.    Shamsa A, Hosseinzadeh H, Molaei M, Shakeri MT, Rajabi O. Evaluation of Crocus sativus L.(saffron) on male erectile dysfunction: a pilot study. Phytomedicine. 2009;16(8):690-693.
20.    Hosseinzadeh H, Ziaee T, Sadeghi A. The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine. 2008;15(6):491-495.
21.    Sumalatha K, Kumar S, Lakshmi SM. Review on natural aphrodisiac potentials to treat sexual dysfunction. Int J Pharm Ther. 2010;1:10-18.
22.    Hosseinzadeh H, Sadeghnia HR. Effect of safranal, a constituent of Crocus sativus (saffron), on methyl methanesulfonate (MMS)-induced DNA damage in mouse organs: an alkaline single-cell gel electrophoresis (comet) assay. DNA Cell Biol. 2007;26(12):841-846.
23.    Premkumar K, Abraham SK, Santhiya S, Gopinath P, Ramesh A. Inhibition of genotoxicity by saffron (Crocus sativus L.) in mice. Drug Chem Toxicol. 2001;24(4):421-428.
24.    Goyal S, Arora S, Sharma A, Joshi S, Ray R, Bhatia J, et al. Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastuctural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine. 2010;17(3):227-232.
25.    Imenshahidi M, Hosseinzadeh H, Javadpour Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res. 2010;24(7):990-994.
26.    Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H. Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol. 2012;32(2):227-235.
27.    Hosseinzadeh H, Ghenaati J. Evaluation of the antitussive effect of stigma and petals of saffron (Crocus sativus) and its components, safranal and crocin in guinea pigs. Fitoterapia. 2006;77(6):446-448.
28.    Abdullaev F, Frenkel G. Effect of saffron on cell colony formation and cellular nucleic acid and protein synthesis. BioFactors (Oxford, England). 1992;3(3):201-204.
29.    Abdullaev F, Frenkel G. The effect of saffron on intracellular DNA, RNA and protein synthesis in malignant and non-malignant human cells. BioFactors (Oxford, England). 1992;4(1):43-45.
30.    Nair S, Pannikar B, Panikkar K. Antitumour activity of saffron (Crocus sativus). Cancer Lett. 1991;57(2):109-114.
31.    Milajerdi A, Djafarian K, Hosseini B. The toxicity of saffron (Crocus satious L.) and its constituents against normal and cancer cells. J Nutri Intermed Metabol. 2015.
32.    Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: A comprehensive review. Food Chem Toxicol. 2014;64:65-80.
33.    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat rev Drug discov. 2005;4(2):145-160.
34.    Malaekeh-Nikouei B, Jaafari MR, Tabassi SAS, Samiei A. The enhancement of immunosuppressive effects of cyclosporine A on human T-cells using fusogenic liposomes. Colloids and Surfaces B: Biointerfaces. 2008;67(2):238-244.
35.    Huang Z, Jaafari MR, Szoka FC. Disterolphospholipids: nonexchangeable lipids and their application to liposomal drug delivery. Angewandte Chemie. 2009;121(23):4210-4213.
36.    Nair SC, Kurumboor S, Hasegawa J. Saffron chemoprevention in biology and medicine: a review. Cancer Biother Radiopharm. 1995;10(4):257-264.
37.    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv drug deliv rev. 2013;65(1):36-48.
38.    Lai MZ, Duzgunes N, Szoka FC. Effects of replacement of the hydroxyl group of cholesterol and tocopherol on the thermotropic behavior of phospholipid membranes. Biochemistry. 1985;24(7):1646-1653.
39.    McMullen TP, Lewis RN, McElhaney RN. Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines. Biochemistry. 1993;32(2):516-522.
40.    Papahadjopoulos D, Nir S, Ohki S. Permeability properties of phospholipid membranes: effect of cholesterol and temperature. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1972;266(3):561-583.
41.    Abdullaev F, Espinosa-Aguirre J. Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect Prev. 2004;28(6):426-432.
42.    Nair S, Salomi M, Varghese C, Panikkar B, Panikkar K. Effect of saffron on thymocyte proliferation, intracellular glutathione levels and its antitumor activity. BioFactors (Oxford, England). 1992;4(1):51-54.
43.    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control release. 2000;65:271-284.