Nano aptasensors for detection of streptomycin: A review

Document Type : Review Paper

Authors

1 Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran

3 School of Biomedical Engineering and Institute for Biomedical Materials & Devices (IBMD), University of Technology Sydney, Sydney, NSW, 2007, Australia

4 Student Research Committee, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran

5 Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia

6 3School of Biomedical Engineering and Institute for Biomedical Materials & Devices (IBMD), University of Technology Sydney, Sydney, NSW, 2007, Australia

7 Molecular and Cell biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Abstract

This review provides a literature update of the progress in optical and electrochemical aptasensors for the detection of streptomycin in human sera and animal-derived foods.  The uncontrolled use of antibiotics and rising resistance to them, has created a global problem. Therefore, the detection and quantitation of antibiotics, i.e., streptomycin by robust, easy, and sensitive methods is in great demand. Among different strategies, new analytical methods for the efficient detection and quantitative determination of streptomycin have been developed. Aptasensors or aptamer-based biosensors have attracted more attention due to their unique recognition, simple fabrication, and significant selectivity, sensitivity, and specificity. Advantages of aptasensors will be highlighted in this review, with emphasis on methodological technique and specific properties of aptasensors developed for STR determination.  In this review paper, we will focus on the recent development of aptasensors for streptomycin detection, considering the papers summarized in the data bases scopus and google scholar covering the period of time from 2013 till 2021.

Keywords


1.    Granja RH, Niño AMM, Zucchetti RA, Niño REM, Patel R, Salerno AG. Determination of streptomycin residues in honey by liquid chromatography–tandem mass spectrometry. Anal Chim Acta. 2009;637(1-2):64-7.
2.    Pendela M, Hoogmartens J, Van Schepdael A, Adams E. LC‐MS of streptomycin following desalting of a nonvolatile mobile phase and pH gradient. J Sep Sci. 2009;32(20):3418-24.
3.    de Oliveira RC, Paschoal JAR, Sismotto M, da Silva Airoldi FP, Reyes Reyes FG. Development and validation of an LC-APCI-MS-MS analytical method for the determination of streptomycin and dihydrostreptomycin residues in milk. J Chromatogr Sci. 2009;47(9):756-61.
4.    Stead DA. Current methodologies for the analysis of aminoglycosides. J Chromatogr B Biomed Sci Appl. 2000;747(1-2):69-93.
5.    Taghdisi SM, Yazdian-Robati R, Alibolandi M, Ramezani M, Abnous K. Development of Aptamer-Based Fluorescence Sensors. Aptamers for Analytical Applications: Affinity Acquisition and Method Design. 2018:229-46.
6.    Robati RY, Arab A, Ramezani M, Langroodi FA, Abnous K, Taghdisi SM. Aptasensors for quantitative detection of kanamycin. Biosens Bioelectron. 2016;82:162-72.
7.    Mahmoudi T, Pirpour Tazehkand A, Pourhassan-Moghaddam M, Alizadeh-Ghodsi M, Ding L, Baradaran B, et al. PCR-free paper-based nanobiosensing platform for visual detection of telomerase activity via gold enhancement. Microchem J. 2020;154:104594.
8.    Ghorbani F, Abbaszadeh H, Mehdizadeh A, Ebrahimi-Warkiani M, Rashidi M-R, Yousefi M. Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review. Mikrochim Acta. 2019;186(12):838.
9.    Kim Y-J, Kim YS, Niazi JH, Gu MB. Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst Eng. 2010;33(1):31.
10.    Wang X, Dong S, Gai P, Duan R, Li F. Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosens Bioelectron. 2016;82:49-54.
11.    Chen M, Gan N, Zhou Y, Li T, Xu Q, Cao Y, et al. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification. Talanta. 2016;161:867-74.
12.    Taghdisi SM, Danesh NM, Lavaee P, Emrani AS, Ramezani M, Abnous K. A novel colorimetric triple-helix molecular switch aptasensor based on peroxidase-like activity of gold nanoparticles for ultrasensitive detection of lead (II). RSC Adv. 2015;5(54):43508-14.
13.    Ramezani M, Danesh NM, Lavaee P, Abnous K, Taghdisi SM. A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles. Sens Actuators B Chem. 2016;222:1-7.
14.    Mungroo NA, Neethirajan S. Biosensors for the detection of antibiotics in poultry industry—a review. Biosensors. 2014;4(4):472-93.
15.    Song K-M, Lee S, Ban C. Aptamers and their biological applications. Sensors. 2012;12(1):612-31.
16.    Khedri M, Ramezani M, Rafatpanah H, Abnous K. Detection of food-born allergens with aptamer-based biosensors. Trends Analyt Chem. 2018;103:126-36.
17.    Zhou N, Wang J, Zhang J, Li C, Tian Y, Wang J. Selection and identification of streptomycin-specific single-stranded DNA aptamers and the application in the detection of streptomycin in honey. Talanta. 2013;108:109-16.
18.    Soheili V, Taghdisi SM, Khayyat MH, Bazzaz BSF, Ramezani M, Abnous K. Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer. Mikrochim Acta. 2016;183(5):1687-97.
19.    Hur J, Park HG, Kim MI. Reagentless colorimetric biosensing platform based on nanoceria within an agarose gel matrix. Biosens Bioelectron. 2017;93:226-33.
20.    Gopinath SC, Lakshmipriya T, Awazu K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens Bioelectron. 2014;51:115-23.
21.    Yuan J, Wu S, Duan N, Ma X, Xia Y, Chen J, et al. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta. 2014;127:163-8.
22.    Zhou Y, Dong H, Liu L, Li M, Xiao K, Xu M. Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sens Actuators B Chem. 2014;196:106-11.
23.    Yazdian-Robati R, Hedayati N, Ramezani M, Abnous K, Taghdisi SM. Colorimetric gold nanoparticles-based aptasensors. Nanomed J. 2018;5(1):1-5.
24.    Lavaee P, Danesh NM, Ramezani M, Abnous K, Taghdisi SM. Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles. Mikrochim Acta. 2017;184(7):2039-45.
25.    Liu Z, Zhang Y, Xie Y, Sun Y, Bi K, Cui Z, et al. An aptamer-based colorimetric sensor for streptomycin and its application in food inspection. Chem Res Chin Univ. 2017;33(5):714-20.
26.    Emrani AS, Danesh NM, Lavaee P, Ramezani M, Abnous K, Taghdisi SM. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem. 2016;190:115-21.
27.    Liu Z, Zhang Y, Xu S, Zhang H, Tan Y, Ma C, et al. A 3D printed smartphone optosensing platform for point-of-need food safety inspection. Anal Chim Acta. 2017;966:81-9.
28.    Zhao J, Wu Y, Tao H, Chen H, Yang W, Qiu S. Colorimetric detection of streptomycin in milk based on peroxidase-mimicking catalytic activity of gold nanoparticles. RSC Adv. 2017;7(61):38471-8.
29.    Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019.
30.    Luan Q, Miao Y, Gan N, Cao Y, Li T, Chen Y. A POCT colorimetric aptasensor for streptomycin detection using porous silica beads-enzyme linked polymer aptamer probes and exonuclease-assisted target recycling for signal amplification. Sens Actuators B Chem. 2017;251:349-58.
31.    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740-79.
32.    Gan N, Ou C, Tang H, Zhou Y, Cao J. A homogenous “signal-on” aptasensor for antibiotics based on a single stranded DNA binding protein-quantum dot aptamer probe coupling exonuclease-assisted target recycling for signal amplification. RSC Adv. 2017;7(14):8381-7.
33.    Khansai M, Phitak T, Klangjorhor J, Udomrak S, Fanhchaksai K, Pothacharoen P, et al. Effects of sesamin on primary human synovial fibroblasts and SW982 cell line induced by tumor necrosis factor-alpha as a synovitis-like model. BMC Complement Altern Med. 2017;17(1):532.
34.    Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Abnous K. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem. 2016;203:145-9.
35.    Citartan M, Tang T-H. Recent developments of aptasensors expedient for point-of-care (POC) diagnostics. Talanta. 2019.
36.    Lin B, Yu Y, Cao Y, Guo M, Zhu D, Dai J, et al. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens Bioelectron. 2018;100:482-9.
37.    Dehghani S, Nosrati R, Yousefi M, Nezami A, Soltani F, Taghdisi SM, et al. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review. Biosens Bioelectron. 2018;110:23-37.
38.    Sun Y, Han R, Dai Y, Zhu X, Liu H, Gao D, et al. Highly selective and sensitive streptomycin chemiluminescence sensor based on aptamer and G-quadruplex DNAzyme modified three-dimensional graphene composite. Sens Actuators B Chem. 2019;301:127122.
39.    Zhu Q, Liu L, Wang R, Zhou X. A split aptamer (SPA)-based sandwich-type biosensor for facile and rapid detection of streptomycin. J Hazard Mater. 2021;403:123941.
40.    Zhou L, Wang J, Li D, Li Y. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem. 2014;162:34-40.
41.    Khezrian S, Salimi A, Teymourian H, Hallaj R. Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosens Bioelectron. 2013;43:218-25.
42.    Bai H-Y, Del Campo FJ, Tsai Y-C. Sensitive electrochemical thrombin aptasensor based on gold disk microelectrode arrays. Biosens Bioelectron. 2013;42:17-22.
43.    Mokhtarzadeh A, Dolatabadi JEN, Abnous K, de la Guardia M, Ramezani M. Nanomaterial-based cocaine aptasensors. Biosens Bioelectron. 2015;68:95-106.
44.    Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K. A novel electrochemical aptasensor based on Y-shape structure of dual-aptamer-complementary strand conjugate for ultrasensitive detection of myoglobin. Biosens Bioelectron. 2016;80:532-7.
45.    Yin Y, Qin X, Wang Q, Yin Y. A novel electrochemical aptasensor for sensitive detection of streptomycin based on gold nanoparticle-functionalized magnetic multi-walled carbon nanotubes and nanoporous PtTi alloy. RSC Adv. 2016;6(45):39401-8.
46.    Danesh NM, Ramezani M, Emrani AS, Abnous K, Taghdisi SM. A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens Bioelectron. 2016;75:123-8.
47.    Barati N, Razazan A, Nicastro J, Slavcev R, Arab A, Mosaffa F, et al. Immunogenicity and antitumor activity of the superlytic λF7 phage nanoparticles displaying a HER2/neu-derived peptide AE37 in a tumor model of BALB/c mice. Cancer Lett. 2018;424:109-16.
48.    Xue J, Liu J, Wang C, Tian Y, Zhou N. Simultaneous electrochemical detection of multiple antibiotic residues in milk based on aptamers and quantum dots. Analytical methods. 2016;8(9):1981-8.
49.    Yin J, Guo W, Qin X, Pei M, Wang L, Ding F. A regular “signal attenuation” electrochemical aptasensor for highly sensitive detection of streptomycin. New J Chem. 2016;40(11):9711-8.
50.    Yin J, Guo W, Qin X, Zhao J, Pei M, Ding F. A sensitive electrochemical aptasensor for highly specific detection of streptomycin based on the porous carbon nanorods and multifunctional graphene nanocomposites for signal amplification. Sens Actuators B Chem. 2017;241:151-9.
51.    Brett C. Electrochemical impedance spectroscopy for characterization of electrochemical sensors and biosensors. ECS Trans. 2008;13(13):67.
52.    Roushani M, Ghanbari K, Hoseini SJ. Designing an electrochemical aptasensor based on immobilization of the aptamer onto nanocomposite for detection of the streptomycin antibiotic. Microchem J. 2018;141:96-103.
53.    Ghanbari K, Roushani M. A novel electrochemical aptasensor for highly sensitive and quantitative detection of the streptomycin antibiotic. Bioelectrochemistry. 2018;120:43-8.
54.    Xu X, Liu D, Luo L, Li L, Wang K, You T. Photoelectrochemical aptasensor based on CdTe quantum dots-single walled carbon nanohorns for the sensitive detection of streptomycin. Sens Actuators B Chem. 2017;251:564-71.
55.    Okoth OK, Yan K, Zhang J. Mo-doped BiVO4 and graphene nanocomposites with enhanced photoelectrochemical performance for aptasensing of streptomycin. Carbon N Y. 2017;120:194-202.
56.    Vanani SM, Izadi Z, Hemmati R, Saffar B. Fabrication of an ultrasensitive aptasensor for precise electrochemical detection of the trace amounts of streptomycin in milk. Colloids Surf B Biointerfaces. 2021;206:111964.
57.    Bostan HB, Taghdisi SM, Bowen JL, Demertzis N, Rezaee R, Panahi Y, et al. Determination of microcystin-LR, employing aptasensors. Biosens Bioelectron. 2018;119:110-8.
58.    Nosrati R, Golichenari B, Nezami A, Taghdisi SM, Karimi B, Ramezani M, et al. Helicobacter pylori point-of-care diagnosis: Nano-scale biosensors and microfluidic systems. Trends Analyt Chem. 2017;97:428-44.