Review on MgO nanoparticles nultifunctional role in the biomedical field: Properties and applications

Document Type : Review Paper

Authors

1 Department of Biophysics, Faculty of Science, Cairo University

2 Chemistry Department, Faculty of Science, Cairo University.

3 Biotechnology Program, Faculty of Science, Cairo University

4 Chemistry Department, Faculty of Science, Cairo University

5 Zoology Department, Faculty of Science, Cairo University

6 Department of Physics, Basic Science Center, Misr University for Science and Technology (MUST), Giza, Egypt.

7 Entomology Department, Faculty of Science, Cairo University

Abstract

Nanotechnology has introduced many useful uses to people's lifestyles in various fields such as health care, agriculture, the food industry, and separate industries during the previous few decades, and it is now available to the majority of the world's population. Among these applications, nanotechnology is critical in the realm of medical therapy. Many forms of studies indicate that nanoparticles, particularly metal oxide, can make a significant contribution to this field. In the current work, we examined one of them, MgO, a critical inorganic oxide used in a variety of applications. MgO is a multilateral oxide material with several properties, including great thermodynamic stability and a low refractive index and dielectric constant. The wide bandgap allows for a variety of uses in ceramics, catalysis, hazardous waste remediation, and antibacterial materials as a refractory additive paint and as a superconductor product. MgO NPs have been used in a variety of disciplines due to their extensive properties and functions, which we will discuss in this article.

Keywords


1. Ficai D, Oprea O, Ficai A, Holban A. Metal Oxide Nanoparticles: Potential Uses in Biomedical Applications. Curr Proteomics. 2016;11(2):139–149.
2. Mallakpour S, Azadi E, Hussain CM. The latest strategies in the fight against the COVID-19 pandemic: the role of metal and metal oxide nanoparticles. New J Chem. 2021;45(14):6167-6179.
3. Alizadeh N, Salimi A. Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering. J Nanobiotechnology. 2021;19(1):1-31.
4. Kwon HJ, Shin K, Soh M, Chang H, Kim J, Lee J, et al. Large-Scale Synthesis and Medical Applications of Uniform-Sized Metal Oxide Nanoparticles. J Adv Mater. 2018; 30(42): 1704290-1704314.
5. Dharmaraj D, Krishnamoorthy M, Rajendran K, Karuppiah K, Annamalai J, Durairaj KR, et al. Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. J Drug Deliv Sci Technol. 2021; 61:102111.
6. Flores-Lopez NS, Cervantes-Chávez JA, Téllez de Jesús DG, Cortez-Valadez M, Estévez-González M, Esparza R. Bactericidal and fungicidal capacity of Ag2O/Ag nanoparticles synthesized with Aloe vera extract. Environ Sci Eng Toxic Hazard Subst Control. 2021;56(7):762-768.
7. Pagar T, Ghotekar S, Pansambal S, Oza R, Marasini BP. Facile plant extract mediated eco-benevolent synthesis and recent applications of CaO-NPs: A state-of-the-art review. Chem. Rev. 2020;2(3):201-210. 
8. Marquis G, Ramasamy B, Banwarilal S, Munusamy AP. Evaluation of antibacterial activity of plant mediated CaO nanoparticles using Cissus quadrangularis extract. J Photochem Photobiol B Biol. 2016; 155:28–33. 
9. Mohamed AA, Abu-Elghait M, Ahmed NE, Salem SS. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol. Trace Elem. Res. 2021;199(7):2788-2799.
10. Shaheen TI, Fouda A, Salem SS. Integration of cotton fabrics with biosynthesized CuO nanoparticles for bactericidal activity in the terms of their cytotoxicity assessment. Ind Eng Chem Res. 2021;60(4):1553-1563.
11. Javed R, Rais F, Kaleem M, Jamil B, Ahmad MA, Yu T, et al. Chitosan capping of CuO nanoparticles: Facile chemical preparation, biological analysis, and applications in dentistry. INT J BIOL MACROMOL. 2021; 167:1452-1467.
12. Thi Tran QM, Thi Nguyen HA, Doan VD, Tran QH, Nguyen VC. Biosynthesis of Zinc Oxide Nanoparticles Using Aqueous Piper betle Leaf Extract and Its Application in Surgical Sutures. J Nanomater. 2021; 2021:1-15.
13 Manimaran K, Balasubramani G, Ragavendran C, Natarajan D, Murugesan S. Biological applications of synthesized zno nanoparticles using Pleurotus djamor against mosquito larvicidal, histopathology, antibacterial, antioxidant and anticancer effect. J Cluster Sci. 2021;32(6):1635-1647.  
14. Amuthavalli P, Hwang JS, Dahms HU, Wang L, Anitha J, Vasanthakumaran M, et al. Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Sci Rep. 2021;11(1):1-3.
15. Kowalik P, Kaminska I, Fronc K, Borodziuk A, Duda MA, Wojciechowski T, et al. The ROS-generating photosensitizer-free NaYF4: Yb, Tm@ SiO2 upconverting nanoparticles for photodynamic therapy application. J Nanotechnol. 2021;32: 475101
16. Mohanan A, Sozharajan B, Karthikeyan R, Kannan S, Manakari V, Gupta M. Tribocorrosion Mechanisms of Pure Mg–SiO2 Nano Syntactic Biodegradable Foams Against Bovine Bone in Artificial Saliva Solution. Journal of Bio-and Tribo-Corrosion. 2021;7(4):1-2.
17. Nikmah A, Taufiq A, Hidayat A, Sunaryono, Susanto H. Excellent Antimicrobial Activity of Fe3O4/SiO2/Ag Nanocomposites. Nano. 2021:16(5):2150049.
18. Kalita C, Sarkar RD, Verma V, Bharadwaj SK, Kalita MC, Boruah PK, et al. Bayesian modeling coherenced green synthesis of NiO nanoparticles using camellia sinensis for efficient antimicrobial activity. BioNanoScience. 2021;11(3):825-837.
19. Al-Shawi SG, Andreevna AN, Aravindhan S, Thangavelu L, Elena A, Viktorovna Kartamysheva N, Rafkatovna Zakieva R. Synthesis of NiO nanoparticles and sulfur, and nitrogen co doped-graphene quantum dots/nio nanocomposites for antibacterial application.J Nanostruct. 2021;11(1):181-188.
20. Ghandali N, Mirnurollahi SM, Safarkar R. A review of applications and mechanisms nanoparticles on inhibiting the growth of pathogens. Asian J Nano Sci. mater. 2021;4(1):68-80. 
21. Ranjbar M, Govahi M, Khakdan F. Green synthesis of Ag/Fe3O4 nanocomposite utilizing Eryngium planum L. leaf extract and its potential applications in medicine. J Drug Deliv Sci Technol. 2021:102941.
22. Hajalilou A, Ferreira LP, Jorge MM, Reis CP, Cruz MM. Superparamagnetic Ag-Fe3O4 composites nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater. 2021; 537:168242.
23. Salimi Z, Ehsani MH, Dezfuli AS, Alamzadeh Z. Evaluation of Iron and Au-Fe3O4 Ferrite Nanoparticles for Biomedical Application. J Supercond Novel Magn. 2021:1-8.
24. Abbas G, Singh KB, Kumar N, Shukla A, Kumar D, Pandey G. Efficient anticarcinogenic activity of α-Fe2O3 nanoparticles: In-vitro and computational study on human renal carcinoma cells HEK-293. Mater. Today Commun. 2021; 26:102175.
25. Raisi A, Asefnejad A, Shahali M, Doozandeh Z, Kamyab Moghadas B, et al. A soft tissue fabricated using a freeze-drying technique with carboxymethyl chitosan and nanoparticles for promoting effects on wound healing. J Nanoanalysis. 2022;7(4):262-274.
26. Jalilian Z, Salar-Amoli J, Jalousian F, Ali-Esfahani T, Dezfouli AB, Barin A. Mutation of p53 as a tumor suppressor gene in lung fibroblast cells exposed to nano-alumina and zinc oxide nanoparticles. Iran Vet J. 2021;17(1):15-23.
27. Sallal HA, Abdul-Hameed AA, Othman F. Preparation of Al2O3/MgO Nano-Composite Particles for Bio-Applications. J Eng Technol. 2020;38(4):586-593.
28. Ghandali N, Mirnurollahi SM, Safarkar R. A review of applications and mechanisms nanoparticles on inhibiting the growth of pathogens. Asian J Nanosci Mater. 2021;4(1):68-80.
29. Benu DP, Earnshaw J, Ashok A, Tsuchiya K, Saptiama I, Yuliarto B, Suendo V, Mukti RR, Fukumitsu N, Ariga K, Kaneti YV. Mesoporous Alumina-Titania Composites with Enhanced Molybdenum Adsorption towards Medical Radioisotope Production. Bull Chem Soc Jpn. 2021;94(2):502-507.
30. Kirthan BR, Prabhakara MC, Bhojyanaik HS, Viswanath R, Nayak PA. Optoelectronic, Photocatalytic and Biological studies of Mixed ligand Cd (II) Complex and its Fabricated CdO Nanoparticles. J Mol Struct. 2021; 1244:130917.
31. Abdulkareem SM, Hammadi AH, Majid H, Hassoni MH, Ali EM. Green Syntheses of CdO NPs and evaluation of their antimicrobial activities. J Phys Conf Ser. 2021;1963(1):12134.
32. Janani B, Syed A, Sruthi L, Sivaranjani PR, Elgorban AM, Bahkali AH, et al. Visible light driven photocatalytic activity and efficient antibacterial activity of ZnFe2O4 decorated CdO nanohybrid heterostructures synthesized by ultrasonic-assisted method. Colloid Surf A-Physicochem ENG ASP. 2021; 628:127307.
33. Nazaripour E, Mousazadeh F, Moghadam MD, Najafi K, Borhani F, Sarani M, et al.Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. Inorg Chem Commun. 2021; 131:108800.
34. Hosseinalipour E, Karimipour M, Ahmadi A. Detrimental effects of cerium oxide nanoparticles on testis, sperm parameters quality, and in vitro fertilization in mice: An experimental study. Int J Reprod Biomed. 2021;19(9):801.
35. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, et al. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. Front Chem. 2020; 8:341.
36. Wani AH, Shah MA. A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J App Pharm Sci. 2012;2(3):40-44.
37. Raliya R, Tarafdar JC, Singh SK, Gautam R, Choudhary K, Maurino VG, et al. MgO nanoparticles biosynthesis and its effect on chlorophyll contents in the leaves of clusterbean (Cyamopsis tetragonoloba L.). Adv Sci Eng Med. 2014;6(5):538-545.
38. Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W. Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum.     Front Microbiol. 2018; 9:790.
39. Mirzaei H, Davoodnia A. Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1, 4-dihydropyridines. Chinese J Catal 2012;33(9-10):1502-1507.
40. Layek K, Kantam ML, Shirai M, Nishio-Hamane D, Sasaki T, Maheswaran H. Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chem. 2012;14(11):3164-3174.
41. SAFAEI GJ, Zahedi S, Javid M, Ghasemzadeh MA. MgO nanoparticles: an efficient, green and reusable catalyst for the onepot syntheses of 2, 6-dicyanoanilines and 1, 3-diarylpropyl malononitriles under different conditions. J Nanostruct. 2015;5(2):153-160.
42. Venkatesha TG, Viswanatha R, Nayaka YA, Chethana BK. Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles. Chem Eng J 2012; 198:1-10.
43. Haldorai Y, Shim JJ. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent. Appl Surf Sci. 2014; 292:447-453.
44. Moussavi G, Mahmoudi M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater. 2009;168(2-3):806-812.
45. Ponraj R, Kannan AG, Ahn JH, Kim DW. Improvement of cycling performance of lithium–sulfur batteries by using magnesium oxide as a functional additive for trapping lithium polysulfide. ACS Appl Mater Interfaces. 2016;8(6):4000-4006.
46. Xiang M, Wu H, Liu H, Huang J, Zheng Y, Yang L, Jing P, Zhang Y, Dou S, Liu H. A flexible 3D multifunctional MgO-decorated carbon foam@ CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv Funct Mater. 2017;27(37):1702573.
47. Petnikota S, Rotte NK, Reddy MV, Srikanth VV, Chowdari BV. MgO-decorated few-layered graphene as an anode for Li-ion batteries. ACS Appl Mater Interfaces. 2015;7(4):2301-2309.
48. Sharma M, Sharma DG. Synthesis of Nanostructured Magnesium Oxide by Sol Gel Method and Its Characterization. Int J Pharm Sci Res. 2018;9(4):1576-1581.
49. Pilarska AA, Klapiszewski Ł, Jesionowski T. Recent development in the synthesis, modification and application of Mg (OH) 2 and MgO: A review. Powder Technol. 2017; 319:373-407.
50. Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X. Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem. 2005;99(5):986-993.
51. Stankic S, Müller M, Diwald O, Sterrer M, Knözinger E, et al. Size-dependent optical properties of MgO nanocubes. Angew Chem Int Ed. 2005;44(31):4917-4920.
52. Azhar AZ, Mohamad H, Ratnam MM, Ahmad ZA. Effect of MgO particle size on the microstructure, mechanical properties and wear performance of ZTA–MgO ceramic cutting inserts. Int J Refract Hard Met. 2011;29(4):456-461.
53. Ding Y, Wu H, Hai B, Wang L, Qian Y. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chem Mater. 2001;13(2):435-440.
54. Sakho EH, Allahyari E, Oluwafemi OS, Thomas S, Kalarikkal N. Dynamic Light Scattering (DLS) in: Thermal and rheological measurement techniqus for nanometerials characterization. 2011.
55. Bondoc LL, Fitzpatrick S. Size distribution analysis of recombinant adenovirus using disc centrifugation. J Ind Microbiol Biotechnol.1998;20(6):317-322.
56. Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking. Methods Enzymol. 2012; 504: 183-200.
57. Bayley H, Martin CR. Resistive-pulse sensing from microbes to molecules. Chem Rev. 2000;100(7):2575-2594.
58. Hiesgen R, Friedrich KA. Atomic force microscopy. In PEM Fuel Cell Diagnostic Tools. 2011:395-422.
59. Wang L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem. B. 2000; 104:1153-1175.
60. Tang ZX, Fang XJ, Zhang ZL, Zhou T, Zhang XY, Shi LE. Nanosize MgO as antibacterial agent: preparation and characteristics. Braz. J Chem Eng. 2012;29(4):775-781.
61. Luo F, Lu J, Wang W, Tan F, Qiao X. Preparation and antibacterial activity of magnesium oxide nanoplates via sol–gel process. Micro Nano Lett. 2013;8(9):479-482.
62. Al-Ghamdi AA, Al-Hazmi F, Alnowaiser F, Al-Tuwirqi RM, Al-Ghamdi AA, Alhartomy OA, et al. A new facile synthesis of ultra fine magnesium oxide nanowires and optical properties. J Electroceram. 2012;29(3):198-203.
63. Rao KG, Ashok CH, Rao KV, Chakra CS. Structural properties of MgO nanoparticles: synthesized by co-precipitation technique. Int J Sci Res. 2014;3(12):43-6.
64. Suresh J, Yuvakkumar R, Sundrarajan M, Hong SI. Green synthesis of magnesium oxide nanoparticles. Adv Mater Res. 2014; 952:141-144. 
65. Boddu VM, Viswanath DS, Maloney SW. Synthesis and characterization of coralline magnesium oxide nanoparticles. J Am Ceram Soc. 2008;91(5):1718-1720.
66. Sundrarajan M, Suresh J, Gandhi RR. A comparative study on antibacterial properties of MgO nanoparticles prepared under different calcination temperature. Dig J Nanomater Biostruct. 2012;7(3):983-989.
67. Vergheese M, Vishal SK. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J Pharmacogn Phytochem. 2018;7:1193-1200.
68. Kumaran RS, Choi YK, Singh V, Song HJ, Song KG, Kim KJ, et al. In vitro cytotoxic evaluation of MgO nanoparticles and their effect on the expression of ROS genes. Int J Mol. 2015;16(4):7551-7564.
69. Meenakshi SD, Rajarajan M, Rajendran S, Kennedy ZR, Brindha G. Synthesis and characterization of magnesium oxide nanoparticles. Elixir Int J. 2012;50(9):10618-10620.
70. Shikha M, Aakash S, Vipin k. Synthesis and Characterization of MgO Nanoparticles by Orange Fruit Waste through Green Method. Int J Adv Res Chem Sci. 2017;4(9):36-42.
71. Abdallah Y, Ogunyemi SO, Abdelazez A, Zhang M, Hong X, Ibrahim E, et al. The green synthesis of MgO nano-Flowers using Rosmarinus officinalis L.(Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. Biomed Res Int. 2019;2019: 5620989.
72. Chandran A, Prakash J, Naik KK, Srivastava AK, Dąbrowski R, Czerwiński M, et al. Preparation and characterization of MgO nanoparticles/ferroelectric liquid crystal composites for faster display devices with improved contrast. J Mater Chem C. 2014;2(10):1844-1853.
73. Sharma G, Soni R, Jasuja D. Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J Taibah Univ Sci. 2017;11(3):471-477.
74. Al-Hazmi F, Alnowaiser F, Al-Ghamdi AA, Al-Ghamdi AA, Aly MM, Al-Tuwirqi RM, et al. A new large–scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattices Microstruct. 2012;52(2):200-209.
75. Ganguly A, Trinh P, Ramanujachary KV, Ahmad T, Mugweru A, Ganguli AK. Reverse micellar based synthesis of ultrafine MgO nanoparticles (8–10 nm): Characterization and catalytic properties. J Colloid Interface Sci. 2011;353(1):137-142.
76. Alvarado E, Torres-Martinez LM, Fuentes AF, Quintana P. Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite. Polyhedron. 2000;19(22-23):2345-2351.
77. Bindhu MR, Umadevi M, Micheal MK, Arasu MV, Al-Dhabi NA. Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Mater Lett. 2016;166:19-22.
78. Camtakan Z, Erenturk S, Yusan S. Magnesium oxide nanoparticles: preparation, characterization, and uranium sorption properties. Environ. Prog. Sustainable Energy. 2012;31(4):536-543.
79. Duong TH, Nguyen TN, Oanh HT, Dang Thi TA, Giang LN, Phuong HT, et al. Synthesis of Magnesium Oxide Nanoplates and Their Application in Nitrogen Dioxide and Sulfur Dioxide Adsorption. J Chem. 2019:2019: 4376429
80. Wang W, Qiao X, Chen J, Li H. Facile synthesis of magnesium oxide nanoplates via chemical precipitation. Mater Lett. 2007;61(14-15):3218-3220.
81. Shah MA, Qurashi A. Novel surfactant-free synthesis of MgO nanoflakes. J Alloys Compd. 2009;482(1-2):548-551.
82. Hong YC, Uhm HS. Synthesis of MgO nanopowder in atmospheric microwave plasma torch. Chem. Phys. Lett. 2006;422(1-3):174-178.
83. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: Cancer J Clin. 2011;61(2):69-90.
84. Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol. B, Biol. 2019;190:86-97.
85. Karthik K, Dhanuskodi S, Kumar SP, Gobinath C, Sivaramakrishnan S. Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater Lett. 2017; 206:217-220.
86. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim SJ. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater. Chem. 2012;22(47):24610-24617.
87. Chalkidou A, Simeonidis K, Angelakeris M, Samaras T, Martinez-Boubeta C, Balcells L, et al. In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment. J Magn Magn Mater. 2011;323(6):775-780.
88. Kumar R, Gokulakrishnan N, Kumar R, Krishna VM, Saravanan A, Supriya S, et al. Can Be a Bimetal Oxide ZnO—MgO Nanoparticles Anticancer Drug Carrier and Deliver? Doxorubicin Adsorption/Release Study. J Nanosci Nanotechnol. 2015;15(2):1543-1553.
89. Majeed S, Danish M, Muhadi NF. Genotoxicity and apoptotic activity of biologically synthesized magnesium oxide nanoparticles against human lung cancer A-549 cell line. Adv Nat Sci.: Nanosci Nanotechnol. 2018;9(2):025011.
90. Ciccarese F, Raimondi V, Sharova E, Silic-Benussi M, Ciminale V. Nanoparticles as Tools to Target Redox Homeostasis in Cancer Cells. Antioxidants. 2020;9(3):211.
91. Di DR, He ZZ, Sun ZQ, Liu J. A new nano-cryosurgical  modality  for  tumor treatment using biodegradable MgO nanoparticles. Nanomed. Nanotechnol. Biol Med. 2012;8(8):1233-1241.
92. Behzadi E, Sarsharzadeh R, Nouri M, Attar F, Akhtari K, Shahpasand K, et al. Albumin binding and anticancer effect of magnesium oxide nanoparticles. Int J Nanomedicine. 2019; 14:257-270.
93. Kelly D, Conway S, Aminov R. Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol. 2005 ;26(6):326-333.
94. Hui YH. Handbook of fermented meat and poultry. John Wiley & Sons; 2014.
95. Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob. Agents. 2017;49(2):137-152.
96. Amann S, Neef K, Kohl S. Antimicrobial resistance (AMR). Eur J Hosp Pharm. 2019;26(3):175-177.
97. Gross M. Antibiotics in crisis; 2013.
98. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 2012; 7:6003-6007.
99. Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;15(1):1-20.
100. Tang ZX, Lv BF. MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng. 2014;31(3):591-601.
101. Maji J, Pandey S, Basu S. Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bull Mater Sci. 2020;43(1):25.
102. Mageshwari K, Mali SS, Sathyamoorthy R, Patil PS. Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technol. 2013; 249:456-462.
103. Nguyen NY, Grelling N, Wetteland CL, Rosario R, Liu H. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci Rep 2018;8(1):1-23.
104. He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol. 2016;14(1):54-63.
105. Vatsha B, Tetyana P, Shumbula PM, Ngila JC, Sikhwivhilu LM, Moutloali RM. Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg (OH) 2 and MgO nanoparticles. J Biomater Nanobiotechnol. 2013;4(4):365-372.
106. Huang L, Li DQ, Evans DG, Duan X. Preparation of  highly dispersed MgO and its bactericidal properties. Eur Phys J D At Mol Opt Phys. 2005;34(1-3):321-323.
107. Jin T, He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogensJ. Nanoparticle Res. 2011;13(12):6877-6885.
108. Suresh J, Rajiv GR, Gowri S, Selvam S, Sundrarajan M. Surface modification and antibacterial behaviour of bio-synthesized mgo nanoparticles coated cotton fabric. J. Biobased Mater. Bioenergy. 2012;6(2):165-171.
109. Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T, et al. Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol. 2000;16(2):187-194.
110. Cai Y, Li C, Wu D, Wang W, Tan F, Wang X, et al. Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Biochem. Eng J 2017; 312:158-166.
111. Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res. 2012;14(9):1063.
112. Jeevanandam J, San Chan Y, Danquah MK. Evaluating the antibacterial activity of MgO nanoparticles synthesized from aqueous leaf extract. Med One. 2019;4(3):1-18.
113. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S. Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J Photochem Photobiol, B. 2019; 190:8-20.
114. Patel MK, Zafaryab M, Rizvi M, Agrawal VV, Ansari ZA, Malhotra BD, et al. Antibacterial and cytotoxic effect of magnesium oxide nanoparticles on bacterial and human cells. J Nanoeng Nanomanuf. 2013;3(2):162-166.
115. Huang L, Li D, Lin Y, Evans DG, Duan X. Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger. Chin Sci Bull. 2005;50(6):514-519.
116. Ibrahem EJ, Thalij KM, Badawy AS. Antibacterial potential of magnesium oxide nanoparticles synthesized by Aspergillus niger. Biotechnol J Int 2017;18(1):1-7.
117. Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat Rev Microbiol. 2015;13(10):605-619.
118. Imada K, Sakai S, Kajihara H, Tanaka S, Ito S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol. 2016;65(4):551-560.
119. Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol. 2004;96(4):803-809.
120. Cai Y, Wu D, Zhu X, Wang W, Tan F, Chen J, et al. Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation. Ceram Int. 2017;43(1):1066-1072.
121. Umar A, Rahman MM, Hahn YB. MgO polyhedral nanocages and nanocrystals based glucose biosensor. Electrochem Commun. 2009;11(7):1353-1357.
122. Aghebati-maleki L, Salehi B, Behfar R, Saeidmanesh H, Ahmadian F, Sarebanhassanabadi M, et al. Designing a hydrogen peroxide biosensor using catalase and modified electrode with magnesium oxide nanoparticles. Int J Electrochem Sci. 2014; 9:257-271.
123. Lu L, Zhang L, Zhang X, Wu Z, Huan S, Shen G, et al. A MgO nanoparticles composite matrix-based electrochemical biosensor for hydrogen peroxide with high sensitivity. Electroanalysis. 2010;22(4):471-477.
124. Zhao J, Qin L, Hao Y, Guo Q, Mu F, Yan Z. Application of tubular tetrapod magnesium oxide in a biosensor for hydrogen peroxide. Microchim Acta. 2012;178(3-4):439-445.
125. Dong XX, Li MY, Feng NN, Sun YM, Yang C, Xu ZL. A nanoporous MgO based nonenzymatic electrochemical sensor for rapid screening of hydrogen peroxide in milk. RSC Adv. 2015;5(105):86485-86489.
126. Li H, Li M, Qiu G, Li C, Qu C, Yang B. Synthesis and characterization of MgO nanocrystals for biosensing applications. J Alloys Compd. 2015; 632:639-644.
127. Zhao L, Li H, Gao S, Li M, Xu S, Li C, et al. MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim Acta. 2015; 168:191-198.
128. Li M, Guo W, Li H, Dai W, Yang B. Electrochemical biosensor based on one-dimensional MgO nanostructures for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Sens Actuators, B. 2014; 204:629-636.
129. Patel MK, Agrawal VV, Malhotra BD, Ansari SG. Nanostructured magnesium oxide: a suitable material for DNA based biosensors. Mater Focus. 2014;3(1):1-11.
130. Patel MK, Ali MA, Zafaryab M, Agrawal VV, Rizvi MM, Ansari ZA, et al. Biocompatible nanostructured magnesium oxide-chitosan platform for genosensing application. Biosens Bioelectron. 2013; 45:181-188.
131. Mohammadi H, Yammouri G, Amine A. Current advances in electrochemical genosensors for detecting microRNA cancer markers. Curr Opin Electrochem. 2019; 16:96-105.
132. Shuai HL, Huang KJ, Zhang WJ, Cao X, Jia MP. Sandwich-type microRNA biosensor based on magnesium oxide nanoflower and graphene oxide–gold nanoparticles hybrids coupling with enzyme signal amplification. Sens Actuators, B. 2017; 243:403-411.
133. Lysaght MJ, Reyes J. The growth of tissue engineering. Tissue Eng. 2001;7(5):485-493.
134. Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science. 2002;295(5557):1009-1014.
135. Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces. MRS Commun. 2017;7(3):289-308.
136. Tarafder S, Dernell WS, Bandyopadhyay A, Bose S. SrO-and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: Mechanical properties and in vivo osteogenesis in a rabbit model. J. Biomed. Mater. Res. Part B Appl. Biomater. J Biomed Mater Res B. 2015;103(3):679-690.
137. Bandyopadhyay A, Bose S, editors. Characterization of biomaterials. Newnes; 2013.
138. Kaur P, Singh KJ, Yadav AK, Sood H, Kaur S, Kaur R, et al. Preliminary investigation of the effect of doping of copper oxide in CaO-SiO2-P2O5-MgO bioactive composition for bone repair applications. Mater Sci Eng C. 2018; 83:177-186.
139. Hickey DJ, Ercan B, Sun L, Webster TJ. Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater. 2015; 14:175-184.
140. Pye AD, Lockhart DE, Dawson MP, Murray CA, Smith AJ. A review of dental implants and infection. J Hosp Infect 2009;72(2):104-110.
141. Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials. 2015;8(3):932-958.
142. Tomsia AP, Launey ME, Lee JS, Mankani MH, Wegst UG, Saiz E. Nanotechnology approaches for better dental implants. Int J Oral Maxillofac Implants. 2011; 26:25-49.
143. Gupta A, Singh G, Afreen S. Application of Nanotechnology in Dental Implants. J Med Dent Sci. 2017;16(11):77-81.
144. Al-Noaman A, Rawlinson SC, Hill RG. The role of MgO on thermal properties, structure and bioactivity of bioactive glass coating for dental implants. J Non-Cryst Solids. 2012;358(22):3019-3027.
145. Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going?. J Funct Biomater. 2018;9(1):1-25.
146. Hench LL. Genetic design of bioactive glass. J Eur Ceram. Soc. 2009;29(7):1257-1265.
147. Carvalho SM, Moreira CD, Oliveira AC, Oliveira AA, Lemos EM, Pereira MM. Bioactive glass nanoparticles for periodontal regeneration and applications in dentistry. In Nanobiomaterials in clinical dentistry. 2019:351-383. Elsevier.
148. Siqueira RL, Peitl O, Zanotto ED. Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: Synthesis and in vitro bioactivity. Mater Sci Eng C. 2011;31(5):983-991.
149. Massera J, Hupa L, Hupa M. Influence of the partial substitution of CaO with MgO on the thermal properties and in vitro reactivity of the bioactive glass S53P4. J Non-Cryst Solids. 2012;358(18-19):2701-2707.
150. Singh RK, Srinivasan A. Bioactivity of ferrimagnetic MgO–CaO–SiO2–P2O5–Fe2O3 glass-ceramics. Ceramics International. 2010;36(1):283-290.
151. Agathopoulos S, Tulyaganov DU, Ventura JM, Kannan S, Karakassides MA, Ferreira JM. Formation of hydroxyapatite onto glasses of the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterials. 2006;27(9):1832-1840.
152. Erol M, Özyuguran A, Çelebican Ö. Synthesis, characterization, and in vitro bioactivity of sol-gel-derived Zn, Mg, and Zn-Mg Co-doped bioactive glasses. Chem Eng Technol. 2010;33(7):1066-1074.
153. Correia CO, Leite ÁJ, Mano JF. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydr Polym. 2015; 123:39-45.
154. Mota J, Yu N, Caridade SG, Luz GM, Gomes ME, Reis RL, et al. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater. 2012;8(11):4173-4180.
155. Luz GM, Mano JF. Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomed Mater. 2012;7(5):1-9.
156. Imani AA, Hosseini HM, Hafezi F, Hosseinnejad F, Nourani MR. Sol–gel-derived bioactive glass containing SiO2–MgO–CaO–P2O5 as an antibacterial scaffold. J Biomed Mater Res Part A. 2013;101(6):1582-1587.
157. Kansal I, Goel A, Tulyaganov DU, Rajagopal RR, Ferreira JM. Structural and thermal characterization of CaO–MgO–SiO2–P2O5–CaF2 glasses. J Eur Ceram Soc. 2012;32(11):2739-2746.
158. Harun WS, Kamariah MS, Muhamad N, Ghani SA, Ahmad F, Mohamed Z. A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol. 2018; 327:128-151.
159. Lopez-Esteban S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP. Bioactive glass coatings for orthopedic metallic implants. J Eur Ceram Soc. 2003;23(15):2921-2930.
160. Rabiee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L. Effect of ion substitution on properties of bioactive glasses: A review. Ceram Int. 2015;41(6):7241-7251.
161. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014;5(1):1-9.
162. Kurland BF, Gerstner ER, Mountz JM, Schwartz LH, Ryan CW, Graham MM, et al. Promise and pitfalls of quantitative imaging in oncology clinical trials. Magn Reson Imaging. 2012;30(9):1301-1312.
163. Guo T, Lin M, Huang J, Zhou C, Tian W, Yu H, et al. The recent advances of magnetic nanoparticles in medicine. J Nanomater. 2018;2018(1):7805147.
164. Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics. 2021;13(7):943.
165. Fang C, Zhang M. Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem. 2009;19(35):6258-6266.
166. Anderson SD, Gwenin VV, Gwenin CD. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res Lett. 2019;14(1):1-6.
167. Blasiak B, van Veggel FC, Tomanek B. Applications of nanoparticles for MRI cancer diagnosis and therapy. J Nanomater. 2013;2013(1):148578.
168. Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, et al. Adjustable Hyperthermia Response of Self-Assembled Ferromagnetic Fe-MgO Core–Shell Nanoparticles by Tuning Dipole–Dipole Interactions. Adv Funct Mater. 2012;22(17):3737-3744.
169. Martinez-Boubeta C, Balcells L, Cristòfol R, Sanfeliu C, Rodríguez E, Weissleder R, et al. Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomed.: Nanotechnol Biol Med. 2010;6(2):362-370.
170. Boro B, Nath AK, Barthakur M, Kalita P. Synthesis and characterization of MgO nanoparticle and its in vitro cytotoxic effect on erythrocytes. In Advances in Bioprocess Engineering and Technology 2021:199-207. 
171. Baravkar PN, Sayyed AA, Rahane CS, Chate GP, Wavhale RD, Pratinidhi SA, et al. Nanoparticle Properties Modulate Their Effect on the Human Blood Functions. BioNanoScience. 2021:11:816-824.
172. Bhattacharya P, Swain S, Giri L, Neogi S. Fabrication of magnesium oxide nanoparticles by solvent alteration and their bactericidal applications. J Mater Chem. B. 2019;7(26):4141-4152.
173. Alsaleh NB. Adverse cardiovascular responses of engineered Nanomaterials: Current understanding of molecular mechanisms and future challenges. Nanomed Nanotechnol Biol Med. 2021:102421. 
174. Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J Appl Toxicol. 2021;41(5):683-700. 
175. Areecheewakul S, Adamcakova-Dodd A, Givens BE, Steines BR, Wang Y, Meyerholz DK, et al Toxicity assessment of metal oxide nanomaterials using in vitro screening and murine acute inhalation studies. NanoImpact. 2020; 18:100214. 
176. Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J Appl Toxicol. 2021;41(5):683-700. 
177. Mekky G, Seeds M, Diab AE, Shehata AM, Ahmed-Farid OA, Alzebdeh D, et al. The potential toxic effects of magnesium oxide nanoparticles and valproate on liver tissue. J Biochem Mol Toxicol. 2021;35(3):22676. 
178. Naguib GH, Abd El-Aziz GS, Mously HA, Bukhary SM, Hamed MT. Assessment of the dose-dependent biochemical and cytotoxicity of zein-coated MgO nanowires in male and female albino rats. Ann Med. 2021;53(1):1850-1862. 
179. Mangalampalli B, Dumala N, Perumalla VR, Grover P. Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles in albino Wistar rats after 28-day repeated oral exposure. Environ Toxicol. 2018;33(4):396-410. 
180. Mittag A, Schneider T, Westermann M, Glei M. Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells. Arch Toxicol. 2019 ;93(6):1491-1500.