Impact of nanovectors in multimodal medical imaging

Document Type : Review Paper

Authors

1 Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603 103, India

2 Department of Radiology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603 103, India

Abstract

Medical imaging is currently revolutionizing the diagnosis and treatment of a variety of diseases. Several imaging modalities have been developed based on advances in science and engineering. The impact of these imaging tools has been further improved with the advent of various modern chemistries, leading to the development of contrast agents that serve further to localize the detection of diseased tissues. Several researchers are recently involved in engineering contrast agents that can generate contrast differences between tissues in multiple imaging modalities, enabling cross-referenced determination of anomalies. To establish these multimodal imaging agents, nanovectors have gained significance due to their key physicochemical properties.  The major focus of this review is on the engineering strategies of nanovectors for multimodal medical imaging. The review conceives the basic principles, major parameters, and limitations of imaging modalities, namely, magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging at the beginning. Drawbacks of traditional contrast agents and the demand for new contrast agents are established. The importance of multimodal imaging and the need for a single contrast agent for these imaging applications are elaborated. Finally, the advantages, limitations, and design considerations of nanovectors based on magnetic and metallic nanoparticles with surface modifications to reduce toxicity and enable targeted delivery as multimodal imaging agents are also emphasized.

Keywords


1.    Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small. 2007;3(11):1840-54.
2.    Sharmiladevi P, Girigoswami K, Haribabu V, Girigoswami A. Nano-enabled theranostics for cancer. Mater Adv. 2021;2:2876-2891.
3.    Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44(10):1050-1060.
4.    Weber WA, Czernin J, Anderson CJ, Badawi RD, Barthel H, Bengel F, et al. The Future of Nuclear Medicine, Molecular Imaging, and Theranostics. J Nucl Med. 2020;61(Supplement 2):263S-272S.
5.    Haribabu V, Girigoswami K, Sharmiladevi P, Girigoswami A. Water–Nanomaterial Interaction to Escalate Twin-Mode Magnetic Resonance Imaging. ACS Biomater Sci Eng. 2020;6(8):4377-4389.
6.    Willmann JK, Van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7(7):591-607.
7.    Saleem SN. Fetal MRI: An approach to practice: A review. J Adv Res. 2014;5(5):507-523.
8.    Tocchio S, Kline-Fath B, Kanal E, Schmithorst VJ, Panigrahy A, editors. MRI evaluation and safety in the developing brain. Seminars in perinatology; 2015: Elsevier.
9.    Grover VP, Tognarelli JM, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ. Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 2015;5(3):246-255.
10.    Riaz S, Khizar S, Ahmad NM, Shahnaz G, Lebaz N, Elaïssari A. Magnetic Polymer Colloids for Ultrasensitive Molecular Imaging. Magnetic Nanoparticles in Human Health and Medicine: Current Medical Applications and Alternative Therapy of Cancer. 2021 Aug 30:135-150.
11.    Zhou Z, Qutaish M, Han Z, Schur RM, Liu Y, Wilson DL, Lu ZR. MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nat Commun. 2015;6(1):1-1.
12.    Lee SH, Kim BH, Na HB, Hyeon T. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdiscip. Rev Nanomed Nanobiotechnol. 2014;6(2):196-209.
13.    Ling D, Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. 2013;9(9‐10):1450-1466.
14.    Plewes DB, Kucharczyk W. Physics of MRI: A primer. J Magn Reson. Imaging. 2012;35(5):1038-1054.
15.    Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2018;119(2):957-1057.
16.    Chen Y, Ding X, Zhang Y, Natalia A, Sun X, Wang Z, et al. Design and synthesis of magnetic nanoparticles for biomedical diagnostics. Quant. Imaging Med Surg. 2018;8(9):957.
17.    Westbrook C. MRI at a Glance: John Wiley & Sons; 2016.
18.    Clough TJ, Jiang L, Wong K-L, Long NJ. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat Commun. 2019;10(1):1-14.
19.    Huda W, Slone RM. Review of radiologic physics: Lippincott Williams & Wilkins; 2003.
20.    Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, et al. X-ray computed tomography. Nat Rev Dis Primers. 2021;1(1):1-21.
21.    Dong J, Fu J, He Z. A deep learning reconstruction framework for X-ray computed tomography with incomplete data. PLoS One. 2019;14(11):e0224426.
22.    Foldyna B, Lu M, Hoffmann U. Cardiac Computed Tomography. Comprehensive Cardiovascular Medicine in the Primary Care Setting. 2018:481. 
23.    Smith-Bindman R, Miglioretti DL, Johnson E, Lee C, Feigelson HS, Flynn M, et al. Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996-2010. JAMA. 2012;307(22):2400-2409.
24.    Sabel BO, Buric K, Karara N, Thierfelder KM, Dinkel J, Sommer WH, et al. High-pitch CT pulmonary angiography in third generation dual-source CT: image quality in an unselected patient population. PLoS One. 2016;11(2):e0146949.
25.    Payne JT. CT radiation dose and image quality. Radiologic Clinics. 2005;43(6):953-962.
26.    Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, et al. Quantitative PET in the 2020s: A roadmap Phys Med Biol. 2021;66(6):06RM1.
27.    Hsu JC, Nieves LM, Betzer O, Sadan T, Noël PB, Popovtzer R, et al. Nanoparticle contrast agents for X‐ray imaging applications. Wiley Interdiscip. Rev Nanomed Nanobiotechnol. 2020;12(6):e1642.
28.    Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev 2013;113(3):1641-1666.
29.    Sauer M, Hofkens J, Enderlein J. Handbook of fluorescence spectroscopy and imaging: from ensemble to single molecules: John Wiley & Sons; 2010.
30.    Sasikumar D, John AT, Sunny J, Hariharan M. Access to the triplet excited states of organic chromophores. Chem Soc Rev. 2020;49(17):6122-6140.
31.    Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2010;110(5):2641-2684.
32.    Humeniuk A, Bužančić M, Hoche J, Cerezo J, Mitrić R, Santoro F, et al. Predicting fluorescence quantum yields for molecules in solution: A critical assessment of the harmonic approximation and the choice of the lineshape function.     J Chem Phys. 2020;152(5):054107.
33.    Marian CM. Spin–orbit coupling and intersystem crossing in molecules. Wiley Interdiscip. Rev Comput Mol Sci. 2012;2(2):187-203.
34.    Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer. 2007;120(12):2527-2537.
35.    Costanzo M, Carton F, Marengo A, Berlier G, Stella B, Arpicco S, et al. Fluorescence and electron microscopy to visualize the intracellular fate of nanoparticles for drug delivery. Eur J Histochem. 2016;60(2):2640.
36.    Wilson RH, Nadeau KP, Jaworski FB, Tromberg BJ, Durkin AJ. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. J Biomed Opt. 2015;20(3):030901.
37.    Stellari F, Bergamini G, Ruscitti F, Sandri A, Ravanetti F, Donofrio G, et al. In vivo monitoring of lung inflammation in CFTR-deficient mice. J Transl Med. 2016;14(1):1-9.
38.    Shaffer TM, Pratt EC, Grimm J. Utilizing the power of Cerenkov light with nanotechnology. Nature Nanotechnol. 2017;12(2):106-117.
39.    Boschi F, De Sanctis F. Overview of the optical properties of fluorescent nanoparticles for optical imaging. Eur J Histochem. 2017;61(3):2830.
40.    Amsaveni G, Farook AS, Haribabu V, Murugesan R, Girigoswami A. Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv Sci Eng Med. 2013;5(12):1340-1348.
41.    Haribabu V, Farook AS, Goswami N, Murugesan R, Girigoswami A. Optimized Mn‐doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. J. Biomed. Mater Res Part B Appl. Biomater.. 2016;104(4):817-824.
42.    Mattrey RF, Aguirre DA. Advances in contrast media research1. Acad Radiol. 2003;10(12):1450-1460.
43.    Geraldes CF, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging. 2009;4(1):1-23.
44.    Sharmiladevi P, Haribabu V, Girigoswami K, Farook AS, Girigoswami A. Effect of mesoporous nano water reservoir on MR relaxivity. Sci Rep. 2017;7(1):1-7.
45.    Mao X, Xu J, Cui H. Functional nanoparticles for magnetic resonance imaging. Wiley Interdiscip. Rev Nanomed Nanobiotechnol. 2016;8(6):814-841.
46.    Estelrich i Latràs J, Sánchez Martín M, Busquets i Viñas M. Nanoparticles in Magnetic Resonance Imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10:1727-1741. 
47.    Galper MW, Saung MT, Fuster V, Roessl E, Thran A, Proksa R, et al. Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast. Invest Radiol. 2012;47(8):475.
48.    Katayama H. Yamaguchi K, Kozuka T, Takashima T, Seez P, Matsuura K. Adverse reactions to ionic and non ionic contrast media: a report from the Japanese committee on the safety of contrast media. Radiology. 1990;175(3):621.
49.    McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275(3):772-782.
50.    Yang L, Sun C, Lin H, Gong X, Zhou T, Deng W-T, et al. Sensitive contrast-enhanced magnetic resonance imaging of orthotopic and metastatic hepatic tumors by ultralow doses of zinc ferrite octapods. Chem Mater. 2019;31(4):1381-1390.
51.    Thomsen HS. European Society of Urogenital Radiology (ESUR) guidelines on the safe use of iodinated contrast media. Eur J Radiol. 2006;60(3):307-313.
52.    Park S-J, Kang D-Y, Sohn K-H, Yoon S-H, Lee W, Choi Y-H, et al. Immediate mild reactions to CT with iodinated contrast media: strategy of contrast media readministration without corticosteroids. Radiology. 2018;288(3):710-716.
53.    Suh YJ, Yoon SH, Hong H, Hahn S, Kang D-Y, Kang H-R, et al. Acute adverse reactions to nonionic iodinated contrast media: a meta-analysis. Invest Radiol. 2019;54(9):589-599.
54.    Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015;115(1):327-394.
55.    Reguera J, de Aberasturi DJ, Henriksen-Lacey M, Langer J, Espinosa A, Szczupak B, et al. Janus plasmonic–magnetic gold–iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale. 2017;9(27):9467-9480.
56.    Veit-Haibach P, Kuhn FP, Wiesinger F, Delso G, von Schulthess G. PET–MR imaging using a tri-modality PET/CT–MR system with a dedicated shuttle in clinical routine. Magn. Reson. Mater Phys Biol Med. 2013;26(1):25-35.
57.    Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 2015;115(19):10907-10937.
58.    Hsu JC, Naha PC, Lau KC, Chhour P, Hastings R, Moon BF, et al. An all-in-one nanoparticle (AION) contrast agent for breast cancer screening with DEM-CT-MRI-NIRF imaging. Nanoscale. 2018;10(36):17236-17248.
59.    Ahmed HU, Kirkham A, Arya M, Illing R, Freeman A, Allen C, et al. Is it time to consider a role for MRI before prostate biopsy? Nat Rev Clin Oncol. 2009;6(4):197-206.
60.    Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17(7):484-499.
61.    Cherry SR, editor Multimodality imaging: Beyond pet/ct and spect/ct. Seminars in nuclear medicine; 2009: Elsevier.
62.    Penfield JG, Reilly RF. What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol. 2007;3(12):654-668.
63.    Ballou B, Ernst LA, Waggoner AS. Fluorescence imaging of tumors in vivo. Curr Med Chem. 2005;12(7):795-805.
64.    Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int. Ed. 2001;40(22):4128-4158.
65.    Singh NA. Nanotechnology innovations, industrial applications and patents. Environ. Chem Lett. 2017;15(2):185-191.
66.    Calixto GMF, Bernegossi J, De Freitas LM, Fontana CR, Chorilli M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules 2016;21(3):342.
67.    Wagner V, Dullaart A. Bock, AK & Zweck, A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;2