Electrospun PCL/chitosan nanofibrous scaffold for human bladder smooth muscle regeneration

Document Type : Research Paper

Authors

1 Department of Medical Nanotechnology, School of Advanced Sciences and Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

2 Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

3 Department of Physiotherapy, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Objective(s): Several pathologic complications may lead to defects in urinary bladder tissue or organ loss. In this regard, bladder tissue engineering utilizing electrospun nanofibrous PCL and PCL/chitosan would be promising as replacing structures. 
Materials and Methods: The resultant nanofibers were characterized for their morphology, diameter and composition by scanning electron microscopy (SEM), and also, FT-IR and CHN analyses. Then, isolation of smooth muscle cells of human urinary bladder biopsies was performed and the obtained cells were characterized by immunocytochemistry (ICC). Thereafter, seeded cells on PCL and PCL/CS nanofibers were assayed for their viability/toxicity, and also, cell-scaffold attachments and cell morphologies were investigated. 
Results: The findings illustrated that PCL and PCL/CS nanofibers of about 100 nm were successfully fabricated. The obtained scaffolds provided appropriate environment for attachment and expansion of seeded detrusor smooth muscle cells. Biocompatibility of both scaffolds was demonstrated by alamar blue assay. After 7 days of study, cells showed higher viability percentage on PCL/CS nanofibers. 
Conclusion: Nanofibrous PCL or PCL/CS scaffolds could properly help adhesion and proliferation/growth of human bladder smooth muscle cells (hBSMCs). 

Keywords


1.    Atala A. Tissue engineering of human bladder. British medical bulletin. 2011;97(1):81-104.
2.    Kumar N, Saxena S, Kumar V, Shrivastava S, Gangwar AK, Maiti SK, et al. Scaffolds for bladder tissue engineering.  Handbook of Tissue Engineering Scaffolds: Volume Two: Elsevier; 2019. p. 493-548.
3.    Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011. CA Cancer J Clin. 2011;61(4):212-236.
4.    Petrovic V, Stankovic J, Stefanovic V. Tissue engineering of the urinary bladder: current concepts and future perspectives. ScientificWorldJournal. 2011;11:1479-1488.
5.    McDougal WS. Metabolic complications of urinary intestinal diversion. J Urol. 1992;147:1199-208.
6.    KAEFER M, HENDREN WH, BAUER SB, GOLDENBLATT P, PETERS CA, ATALA A, et al. Reservoir calculi: a comparison of reservoirs constructed from stomach and other enteric segments. J Urol. 1998;160(6):2187-2190.
7.    Kaefer M, Tobin MS, Hendren WH, Bauer SB, Peters CA, Atala A, et al. Continent urinary diversion: the Children’s Hospital experience. J Urol. 1997;157(4):1394-1399.
8.    Filmer RB, Spencer JR. Malignancies in bladder augmentations and intestinal conduits. J Urol. 1990;143(4):671-678.
9.    Dehqan Niri A, Karimi Zarchi AA, Ghadiri Harati P, Salimi A, Mujokoro B. Tissue engineering scaffolds in the treatment of brain disorders in geriatric patients. Artificial Organs. 2019;43(10):947-960.
10.    Firoozi S, Amani A, Derakhshan MA, Ghanbari H, editors. Artificial Neural Networks modeling of electrospun polyurethane nanofibers from chloroform/methanol solution. J Nano Res. 2016: Trans Tech Publ.
11.    Babaloo H, Ebrahimi‐Barough S, Derakhshan MA, Yazdankhah M, Lotfibakhshaiesh N, Soleimani M, et al. PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J Cell Physiol. 2019;234(7):11060-11069.
12.    Shahrousvand M, Ghollasi M, Zarchi AAK, Salimi A. Osteogenic differentiation of hMSCs on semi-interpenetrating polymer networks of polyurethane/poly(2‑hydroxyethyl methacrylate)/cellulose nanowhisker scaffolds. Int J Biol Macromol. 2019;138:262-271.
13.    Ahmadi P, Nazeri N, Derakhshan MA, Ghanbari H. Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol. 2021.
14.    Kajbafzadeh A-M, Payabvash S, Salmasi AH, Sadeghi Z, Elmi A, Vejdani K, et al. Time-dependent neovasculogenesis and regeneration of different bladder wall components in the bladder acellular matrix graft in rats. J of Surg Res. 2007;139(2):189-202.
15.    Zhang Y, Kropp BP, Moore P, Cowan R, FURNESS PD, KOLLIGIAN ME, et al. Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol. 2000;164(3):928-935.
16.    Zhang Y, Frimberger D, Cheng EY, Lin Hk, Kropp BP. Challenges in a larger bladder replacement with cell‐seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU int. 2006;98(5):1100-1105.
17.    Atala A, Vacanti J, Peters C, Mandell J, Retik A, Freeman M. Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol. 1992;148(2 Pt 2):658-662.
18.    Hoque ME, San WY, Wei F, Li S, Huang M-H, Vert M, et al. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Tissue Eng Part A. 2009;15(10):3013-3024.
19.    Xu F, Wang Y, Jiang X, Tan H, Li H, Wang K-J. Effects of different biomaterials: Comparing the bladder smooth muscle cells on waterborne polyurethane or poly-lactic-co-glycolic acid membranes. Kaohsiung J Med Sci. 2012;28(1):10-15.
20.    Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog Polym Sci. 2010;35(7):868-892.
21.    Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, et al. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci. 2014;39(5):862-890.
22.    Arvand M, Mirzaei E, Derakhshan MA, Kharrazi S, Sadroddiny E, Babapour M, et al. Fabrication of antibacterial silver nanoparticle-modified chitosan fibers using Eucalyptus extract as a reducing agent. J Appl Polym Sci. 2015;132(25).
23.    Wei G, Li C, Fu Q, Xu Y, Li H. Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction. Int Urol Nephrol. 2015;47(1):95-99.
24.    Ogueri KS, Laurencin CT. Nanofiber Technology for Regenerative Engineering. ACS Nano. 2020;14(8):9347-9363.
25.    Li Y, Xiao Y, Liu C. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev. 2017;117(5):4376-421.
26.    Derakhshan MA, Pourmand G, Ai J, Ghanbari H, Dinarvand R, Naji M, et al. Electrospun PLLA nanofiber scaffolds for bladder smooth muscle reconstruction. Int Urol Nephrol. 2016;48(7):1097-1104.
27.    Mokhames Z, Rezaie Z, Ardeshirylajimi A, Basiri A, Taheri M, Omrani MD. VEGF-incorporated PVDF/collagen nanofibrous scaffold for bladder wall regeneration and angiogenesis. Int J Polym Mater Polym Biomater. 2020:1-9.
28.    McManus M, Boland E, Sell S, Bowen W, Koo H, Simpson D, et al. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed Mater. 2007;2(4):257.
29.    Huang JW, Xu YM, Li ZB, Murphy SV, Zhao W, Liu QQ, et al. Tissue performance of bladder following stretched electrospun silk fibroin matrix and bladder acellular matrix implantation in a rabbit model. J Biomed Mater Res Part A. 2015.
30.    Sharifiaghdas F, Naji M, Sarhangnejad R, Rajabi-Zeleti S, Mirzadeh H, Zandi M, et al. Comparing Supportive Properties of Poly Lactic-Co-Glycolic Acid (PLGA), PLGA/Collagen and Human Amniotic Membrane for Human Urothelial and Smooth Muscle Cells Engineering. Urol J. 2014;11(3):1620-1628.
31.    Mirzaei A, Saburi E, Islami M, Ardeshirylajimi A, Omrani MD, Taheri M, et al. Bladder smooth muscle cell differentiation of the human induced pluripotent stem cells on electrospun Poly (lactide-co-glycolide) nanofibrous structure. Gene. 2019;694:26-32.
32.    Fakhrieh M, Darvish M, Ardeshirylajimi A, Taheri M, Omrani MD. Improved bladder smooth muscle cell differentiation of the mesenchymal stem cells when grown on electrospun polyacrylonitrile/polyethylene oxide nanofibrous scaffold. J cell biochem. 2019;120(9):15814-15822.
33.    Feng C, Liu C, Liu S, Wang Z, Yu K, Zeng X. Electrospun Nanofibers with Core–Shell Structure for Treatment of Bladder Regeneration. Tissue Eng Part A. 2019;25(17-18):1289-1299.
34.    Mochane MJ, Motsoeneng TS, Sadiku ER, Mokhena TC, Sefadi JS. Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Appl Sci. 2019;9(11):2205.
35.    Derakhshan MA, Nazeri N, Khoshnevisan K, Heshmat R, Omidfar K. Three-layered PCL-collagen nanofibers containing melilotus officinalis extract for diabetic ulcer healing in a rat model. J Diabetes Metab Disord. 2022:1-9.
36.    Shakhssalim N, Rasouli J, Moghadasali R, Aghdas FS, Naji M, Soleimani M. Bladder smooth muscle cells interaction and proliferation on PCL/PLLA electrospun nanofibrous scaffold. Int J Artif Organs. 2013;36(2):113-120.
37.    Ahvaz HH, Soleimani M, Mobasheri H, Bakhshandeh B, Shakhssalim N, Soudi S, et al. Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: implication for bladder tissue engineering. J Mater Sci Mater Med. 2012;23(9):2281-2290.
38.    Costantino Del G, Alberto V, Guido B, Vincenza M, Angelo S, Alessandro Z, et al. Evaluation of electrospun bioresorbable scaffolds for tissue-engineered urinary bladder augmentation. Biomed Mater. 2013;8(4):045013.
39.    Semnani D, Naghashzargar E, Hadjianfar M, Dehghan Manshadi F, Mohammadi S, Karbasi S, et al. Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int J Polym Mater Polym Biomater. 2017;66(3):149-157.
40.    Das P, Remigy J-C, Lahitte J-F, van der Meer AD, Garmy-Susini B, Coetsier C, et al. Development of double porous poly (ε-caprolactone)/chitosan polymer as tissue engineering scaffold. Mater Sci Eng C. 2020;107:110257.
41.    Hong S, Kim G. Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydr Polym. 2011;83(2):940-946.
42.    Zhou X, Kong M, Cheng X, Li J, Li J, Chen X. Investigation of acetylated chitosan microspheres as potential chemoembolic agents. Colloids Surf B: Biointerfaces. 2014;123:387-394.
43.    Movaffagh J, Bazzaz F, Yazdi AT, Sajadi-Tabassi A, Azizzadeh M, Najafi E, et al. Wound Healing and Antimicrobial Effects of Chitosan-hydrogel/Honey Compounds in a Rat Full-thickness Wound Model. Wounds. 2019;31(9):228-235.
44.    Costa-Pinto AR, Martins AM, Castelhano-Carlos MJ, Correlo VM, Sol PC, Longatto-Filho A, et al. In vitro degradation and in vivo biocompatibility of chitosan–poly (butylene succinate) fiber mesh scaffolds. J Bioact Compat Polym. 2014;29(2):137-151.
45.    Shalumon K, Anulekha K, Girish C, Prasanth R, Nair S, Jayakumar R. Single step electrospinning of chitosan/poly (caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr Polym. 2010;80(2):413-419.
46.    McKee MG, Wilkes GL, Colby RH, Long TE. Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. Macromolecules. 2004;37(5):1760-1767.
47.    Casasola R, Thomas NL, Trybala A, Georgiadou S. Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer. 2014;55(18):4728-4737.
48.    Najafi-Taher R, Derakhshan MA, Faridi-Majidi R, Amani A. Preparation of an ascorbic acid/PVA-chitosan electrospun mat: a core/shell transdermal delivery system. RSC Adv. 2015;5(62):50462-50469.
49.    Saderi N, Rajabi M, Akbari B, Firouzi M, Hassannejad Z. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. J Mater Sci Mater Med. 2018;29(9):134.
50.    Mahoney C, Conklin D, Waterman J, Sankar J, Bhattarai N. Electrospun nanofibers of poly (ε-caprolactone)/depolymerized chitosan for respiratory tissue engineering applications. J Biomater Sci Polym Ed. 2016;27(7):611-625.
51.    Vino AB, Ramasamy P, Shanmugam V, Shanmugam A. Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pac J Trop Biomed. 2012;2(1):S334-S341.
52.    Song C, Yu H, Zhang M, Yang Y, Zhang G. Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int J Biol Macromol. 2013;60:347-354.
53.    Fernandes Queiroz M, Melo KRT, Sabry DA, Sassaki GL, Rocha HAO. Does the use of chitosan contribute to oxalate kidney stone formation? Marine drugs. 2015;13(1):141-158.
54.    Lim S-H, Hudson SM. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res. 2004;339(2):313-319.
55.    Yang S, Li X, Liu P, Zhang M, Wang C, Zhang B. Multifunctional Chitosan/Polycaprolactone Nanofiber Scaffolds with Varied Dual-Drug Release for Wound-Healing Applications. ACS Biomater Sci Eng. 2020;6(8):4666-4676.
56.    Shokraei S, Mirzaei E, Shokraei N, Derakhshan MA, Ghanbari H, Faridi-Majidi R. Fabrication and characterization of chitosan/kefiran electrospun nanofibers for tissue engineering applications. J Appl Polym Sci. 2021;138:e50547.
57.    Nazeri N, Derakhshan MA, Faridi-Majidi R, Ghanbari H. Novel electro-conductive nanocomposites based on electrospun PLGA/CNT for biomedical applications. J Mater Sci Mater Med. 2018;29(11):1-9.
58.    Firoozi S, Derakhshan MA, Karimi R, Rashti A, Negahdari B, Faridi Majidi R, et al. Fabrication and characterization of nanofibrous tricuspid valve scaffold based on polyurethane for heart valve tissue engineering. Nanomed Res J. 2017;2(2):131-141.
59.    Brown AL, Brook-Allred TT, Waddell JE, White J, Werkmeister JA, Ramshaw JA, et al. Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle–urothelial cell interactions. Biomaterials. 2005;26(5):529-543.
60.    Shakhssalim N, Dehghan MM, Moghadasali R, Soltani MH, Shabani I, Soleimani M. Bladder tissue engineering using biocompatible nanofibrous electrospun constructs: feasibility and safety investigation. Urol J. 2012;9(1):410-419.
61.    Alvarez-Perez MA, Guarino V, Cirillo V, Ambrosio L. Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromolecules. 2010;11(9):2238-2246.
62.    Hiep NT, Lee B-T. Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci Mater Med. 2010;21(6):1969-1978.
63.    Chanda A, Adhikari J, Ghosh A, Chowdhury SR, Thomas S, Datta P, et al. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol. 2018;116:774-785.
64.    Sadeghi A, Moztarzadeh F, Mohandesi JA. Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. Int J Biol Macromol. 2019;121:625-632.
65.    Venugopal J, Ma L, Yong T, Ramakrishna S. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biol Int. 2005;29(10):861-867.
66.    Fukunishi T, Best CA, Sugiura T, Shoji T, Yi T, Udelsman B, et al. Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PLoS One. 2016;11(7):e0158555.
67.    Zhou Z, Yan H, Liu Y, Xiao D, Li W, Wang Q, et al. Adipose-derived stem-cell-implanted poly (ε-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model. Regen Med. 2018;13(3):331-342.
68.    Hanczar M, Moazen M, Day R. The Significance of Biomechanics and Scaffold Structure for Bladder Tissue Engineering. Int J Mol Sci. 2021;22(23):12657.
69.    Martins PA, Fonseca AMRM, Santos A, Santos L, Mascarenhas T, Jorge RM, et al. Uniaxial mechanical behavior of the human female bladder. Int Urogynecol J. 2011;22(8):991-995.