Layered double hydroxide nanostructures as drug-carriers in treatment of breast cancer

Document Type : Review Paper


1 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

3 Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran

4 Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran

5 Department of Radiation Oncology, Tabriz International Hospital, Tabriz, Iran

6 Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

7 Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

8 Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran


Breast cancer is a public health problem globally and is the most frequent cancer world wide. Currently, anti-inflammatory and anti-cancer drugs are of prime interest in treating some cancers especially breast cancer and have become an exciting challenge for researchers. The use of layered structures consisting of anions and cations called layered double hydroxides (LDHs) has attracted the attention of many researchers in the field of biomedical and pharmaceuticals. LDHs-nanostructures can be used as drug carriers, especially anti-inflammatory and anti-cancer drugs to treat cancers. Thus, the LDHs should have a number of physicochemical properties to act as a desirable drug carrier. Among the primary factors to increase the efficiency of LDHs are their surface characteristics and size, number and type of ions, rapid clearance from the body after drug release, and non-toxicity. All of these properties make LDHs nano-carriers for carrying anti-inflammatory and anti-cancer drugs to treat a variety of cancers. Therefore, we focus on reviewing the nature of LDH nano-carriers and evaluating the desirable properties for drug delivery, drug loading methods into LDH and anti-inflammatory drug delivery methods, their potential applications in biomedical and their toxicity and antimicrobial effects in breast cancer. 


1.    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-90.
2.    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer journal for clinicians. 2016;66(1):7-30.
3.    Islami F, Goding Sauer A, Miller KD, Siegel RL, Fedewa SA, Jacobs EJ, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018;68(1):31-54.
4.    Jahanafrooz Z, Baradaran B, Mosafer J, Hashemzaei M, Rezaei T, Mokhtarzadeh A, et al. Comparison of DNA and mRNA vaccines against cancer. Drug discovery today. 2020;25(3):552-560.
5.    Bhatia K, Das A. Combinatorial drug therapy in cancer-New insights. Life Sciences. 2020:118134.
6.    Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther. 2009;1(2):1.
7.    Mfouo Tynga I, Abrahamse H. Nano-mediated photodynamic therapy for cancer: Enhancement of cancer specificity and therapeutic effects. Nanomaterials. 2018;8(11):923.
8.    Khodabandehloo H, Zahednasab H, Hafez AA. Nanocarriers usage for drug delivery in cancer therapy. Iran J Cancer Preve. 2016;9(2).
9.    Cho K, Wang X, Nie S, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research. 2008;14(5):1310-1316.
10.    Majidinia M, Mirza‐Aghazadeh‐Attari M, Rahimi M, Mihanfar A, Karimian A, Safa A, et al. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB life. 2020;72(5):855-871.
11.    Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, et al. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules. 2020;25(22):5294.
12.    Farjami A, Salatin S, Jafari S, Mahmoudian M, Jelvehgari M. The Factors Determining the Skin Penetration and Cellular Uptake of Nanocarriers: New Hope for Clinical Development. Current pharmaceutical design. 2021;27(42):4315-4329.
13.    Hua S, De Matos MB, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in pharmacology. 2018;9:790.
14.    Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci 1 (2): 13. Nanomedicines for Cancer Therapy: An Update of FDA Approved and Those under Various Stages of Development. 2014.
15.    Aghebati‐Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, et al. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol. 2020;235(3):1962-1972.
16.    Wakaskar R. Cancer therapy with drug delivery systems. J Pharmacogenomics Pharmacoproteomics. 2017;8:e158.
17.    Shukla S, Shukla SK, Govender PP, Giri N. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC advances. 2016;6(97):94325-94351.
18.    Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in Molecular Biosciences. 2020;7.
19.    Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. BioMed Research International. 2021;2021.
20.    Yousefi V, Tarhriz V, Eyvazi S, Dilmaghani A. Synthesis and application of magnetic@ layered double hydroxide as an anti-inflammatory drugs nanocarrier.  J Nanobiotechnolog. 2020;18(1):1-11.
21.    Mansouri E, Tarhriz V, Yousefi V, Dilmaghani A. Intercalation and release of an anti-inflammatory drug into designed three-dimensionally layered double hydroxide nanostructure via calcination–reconstruction route. Adsorption. 2020:1-8.
22.    Geoprincy G, Gandhi N, Renganathan S. Novel antibacterial effects of alumina nanoparticles on Bacillus cereus and Bacillus subtilis in comparison with antibiotics. Int J Pharm Pharm Sci. 2012;4:544-548.
23.    Li M, Li L, Lin S. Efficient antimicrobial properties of layered double hydroxide assembled with transition metals via a facile preparation method. Chinese Chemical Letters. 2020;31(6):1511-1515.
24.    Yazdani P, Mansouri E, Eyvazi S, Yousefi V, Kahroba H, Hejazi MS, et al. Layered double hydroxide nanoparticles as an appealing nanoparticle in gene/plasmid and drug delivery system in C2C12 myoblast cells. Artificial cells, nanomedicine, and biotechnology. 2019;47(1):436-442.
25.    Delgado RR, Vidaurre MA, De Pauli C, Ulibarri M, Avena M. Surface-charging behavior of Zn–Cr layered double hydroxide.  J Colloid Interface Sci.  2004;280(2):431-441.
26.    Del Hoyo C. Layered double hydroxides and human health: an overview. Applied Clay Science. 2007;36(1-3):103-21.
27.    Li F, Duan X. Applications of layered double hydroxides. Layered double hydroxides. 2006:193-223.
28.    Ookubo A, Ooi K, Hayashi H. Hydrotalcites as potential adsorbents of intestinal phosphate. J Pharm Sci. 1992;81(11):1139-1140.
29.    Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science. 2006;61(3):1027-1040.
30.    Figueiredo MP, Cunha VR, Leroux F, Taviot-Gueho C, Nakamae MN, Kang YR, et al. Iron-based layered double hydroxide implants: Potential drug delivery carriers with tissue biointegration promotion and blood microcirculation preservation. Acs Omega. 2018;3(12):18263-18274.
31. Dong L, Yan L, Hou W-G, Liu S-J. Synthesis and release behavior of composites of camptothecin and layered double hydroxide. J Solid State Chem. 2010;183(8):1811-1816.
32.    Chen W, Zuo H, Zhang E, Li L, Henrich-Noack P, Cooper H, et al. Brain targeting delivery facilitated by ligand-functionalized layered double hydroxide nanoparticles. ACS applied materials & interfaces. 2018;10(24):20326-20333.
33.    Barahuie F, Hussein MZ, Fakurazi S, Zainal Z. Development of drug delivery systems based on layered hydroxides for nanomedicine. Int J Mol  Sci. 2014;15(5):7750-7786.
34.    Maton PN, Burton ME. Antacids revisited. Drugs. 1999;57(6):855-870.
35.    Tarnawski AS, Tomikawa M, Ohta M, Sarfeh IJ. Antacid talcid activates in gastric mucosa genes encoding for EGF and its receptor. The molecular basis for its ulcer healing action. J Physiol Paris. 2000;94(2):93-98.
36.    Meneses CCF, de Sousa PRM, Pinto LC, Coelho GM, da Silva TF, Ferreira LO, et al. Layered double hydroxide–indomethacin hybrid: A promising biocompatible compound for the treatment of neuroinflammatory diseases. J Drug Deliv Sci Technol. 2021;61:102190.
37.    Del Arco M, Cebadera E, Gutierrez S, Martin C, Montero M, Rives V, et al. Mg, Al layered double hydroxides with intercalated indomethacin: synthesis, characterization, and pharmacological study.J Pharm Sci. 2004;93(6):1649-1658.
38.    Li B, He J, Evans DG, Duan X. Inorganic layered double hydroxides as a drug delivery system—intercalation and in vitro release of fenbufen. Applied Clay Science. 2004;27(3-4):199-207.
39.    Qin L, Xue M, Wang W, Zhu R, Wang S, Sun J, et al. The in vitro and in vivo anti-tumor effect of layered double hydroxides nanoparticles as delivery for podophyllotoxin. Int J Pharm. 2010;388(1-2):223-230.
40.    Wang Z, Liang P, He X, Wu B, Liu Q, Xu Z, et al. Etoposide loaded layered double hydroxide nanoparticles reversing chemoresistance and eradicating human glioma stem cells in vitro and in vivo. Nanoscale. 2018;10(27):13106-13121.
41.    Chakraborty J, Roychowdhury S, Sengupta S, Ghosh S. Mg–Al layered double hydroxide–methotrexate nanohybrid drug delivery system: evaluation of efficacy. Materials Science and Engineering: C. 2013;33(4):2168-2174.
42.    Barahuie F, Hussein MZ, Arulselvan P, Fakurazi S, Zainal Z. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods. J Solid State Chem. 2014;217:31-41.
43.    Asiabi H, Yamini Y, Alipour M, Shamsayei M, Hosseinkhani S. Synthesis and characterization of a novel biocompatible pseudo-hexagonal NaCa-layered double metal hydroxides for smart pH-responsive drug release of dacarbazine and enhanced anticancer activity in malignant melanoma. Materials Science and Engineering: C. 2019;97:96-102.
44.    Hakeem A, Zhan G, Xu Q, Yong T, Yang X, Gan L. Facile synthesis of pH-responsive doxorubicin-loaded layered double hydroxide for efficient cancer therapy. Journal of Materials Chemistry B. 2018;6(36):5768-5774.
45.    Shi Y, Van der Meel R, Chen X, Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10(17):7921.
46.    Natfji AA, Ravishankar D, Osborn HM, Greco F. Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J Pharm Sci. 2017;106(11):3179-3187.
47.    Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical reviews. 2012;112(7):4124-4155.
48.    Lin G, Mi P, Chu C, Zhang J, Liu G. Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics. Advanced science. 2016;3(11):1600134.
49.    Choi S-J, Oh J-M, Choy J-H. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells.  J Inorg Biochem. 2009;103(3):463-471.
50.    Dikalov SI, Dikalova AE, Mason RP. Noninvasive diagnostic tool for inflammation-induced oxidative stress using electron spin resonance spectroscopy and an extracellular cyclic hydroxylamine. Archives of biochemistry and biophysics. 2002;402(2):218-226.
51.    Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Particle and fibre toxicology. 2009;6(1):1-12.
52.    Alkhafaji EN, editor Synthesis and characterization of Ag nanoparticle inter Nickel/Aluminum-layer double hydroxide nano hybrids compounds. IOP Conference Series: Materials Science and Engineering; 2020: IOP Publishing.
53.    Koba-Ucun O, Ölmez Hanci T, Arslan-Alaton I, Arefi-Oskoui S, Khataee A, Kobya M, et al. Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment. Molecules. 2021;26(2):395.
54.    Yan M, Yang C, Huang B, Huang Z, Huang L, Zhang X, et al. Systemic toxicity induced by aggregated layered double hydroxide nanoparticles.  Int J Nanomedicine. 2017;12:7183.
55.    Santana-Cruz A, Flores-Moreno JL, Guerra-González R, Martínez-Ortiz MdJ. Antibacterial activity of pipemidic acid ions-MgFeAl layered double hydroxide hybrid against E. coli and S. typhi. J Mex Chem Soc. 2016;60(2):62-66.
56.    Barik S, Behera L, Badamali SK. Assessment of thermal and antimicrobial properties of PAN/Zn-Al layered double hydroxide nanocomposites. Composite Interfaces. 2017;24(6):579-591.
57.    Dewhirst MW, Secomb TW. Transport of drugs from blood vessels to tumour tissue. Nature Reviews Cancer. 2017;17(12):738-750.
58.    Eblan MJ, Wang AZ. Improving chemoradiotherapy with nanoparticle therapeutics. Translational cancer research. 2013;2(4):320.
59.    Steinskog ESS, Sagstad SJ, Wagner M, Karlsen TV, Yang N, Markhus CE, et al. Impaired lymphatic function accelerates cancer growth. Oncotarget. 2016;7(29):45789.
60.    Rathbone MJ. Advances in Delivery Science and Technolo