Application of natural and modified exosomes a drug delivery system

Document Type : Review Paper


1 Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran

2 Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

3 Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran

4 Department of Medical Analysis, Faculty of Applied Science, Tishk International University - Erbil, Kurdistan Region, Iraq

5 Department of Biology, College of Science, Salahaddin University-Erbil, Iraq

6 Department of Biology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq


Extracellular vesicles (EVs) are small molecules produced by most cells that may aid in cell communication. They can transfer functional biomolecules from one cell to the next, and even across the body. Exosomes are some of the most studied extracellular vesicle components. Many medications may be incorporated into exosomes and then disseminated to specific organs, tissues, and cells to provide tailored medication administration. According to a new study, exosomes, which are produced by cells, have a variety of functions and aims. Several studies have proven that a broad variety of cargo may be effectively transported to the precisely specified cells. For this reason, EVs are often used to carry medicinal substances as treatment. The researchers used exosomes that had been treated with additional chemicals to boost their transportability. Exosomes offer a number of advantages over other drug delivery technologies such as nanoparticle-based systems, liposomes, and even polymeric nanoparticles. Due to their similar nature to the body’s own cells, exosomes have no immunogenicity. Because of their nanoscale size, exosomes are the most promising strategy for medicine delivery to specific tissues and organs, and they have gotten the greatest attention in recent years. The ability of natural and manufactured exosomes to convey a variety of cargo to the target cell is investigated in this article.


1.    Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, de Almeida LP. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. JCR 2017;262:247-258.
2.    Braccioli L, Van Velthoven C, Heijnen CJ. Exosomes: a new weapon to treat the central nervous system. Mol Neurobiol. 2014;49(1):113-119.
3.    Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. J Biomater Appl. 2017; 142: -12.
4.    Zhou Y, Tian T, Zhu Y, Jaffar Ali D, Hu F, Qi Y, et al. Exosomes transfer among different species cells and mediating miRNAs delivery. J Cell Biochem. 2017;118(12):4267-4274.
5.    Schorey JS, Harding CV. Extracellular vesicles and infectious diseases: new complexity to an old story. J Clin Investig. 2016;126(4):1181-1189.
6.    Alenquer M, Amorim MJ. Exosome biogenesis, regulation, and function in viral infection. Viruses. 2015;7(9):5066-5083.
7.    Momen LT, Abdolmaleki A, Asadi A, Akram M. Regeneration and Diagnosis of Kidney Disease Using Exosomes. JCMB. 2021;12(4):120113-120126.
8.    Agrahari V, Burnouf P-A, Chew CH, Burnouf T. Extracellular microvesicles as new industrial therapeutic frontiers. Trends Biotechnol. 2019;37(7):707-729.
9.    Kučuk N, Primožič M, Knez Ž, Leitgeb M. Exosomes Engineering and Their Roles as Therapy Delivery Tools, Therapeutic Targets, and Biomarkers. Int J Mol Sci. 2021;22(17):9543-9544.
10.    Riazifar M, Pone EJ, Lötvall J, Zhao W. Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol. 2017;57:125-154.
11.    McBride JD, Rodriguez-Menocal L, Badiavas EV. Extracellular vesicles as biomarkers and therapeutics in dermatology: a focus on exosomes. J Invest Dermatol. 2017;137(8):1622-1629.
12.    Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nature cell biology. 2018;20(3):332-343.
13.    Willms E, Johansson HJ, Mäger I, Lee Y, Blomberg KEM, Sadik M, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific reports.2016;6(1): 1-12.
14.    Mashouri L, Yousefi H, Aref AR, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 2019; 18(1):1-14.
15.    Ferreira D, Moreira JN, Rodrigues LR. New advances in exosome-based targeted drug delivery systems. Crit Rev Oncol Hematol. 2022; 18:103628-103629.
16.    Geis-Asteggiante L, Belew AT, Clements VK, Edwards NJ, Ostrand-Rosenberg S, El-Sayed NM, et al. Differential content of proteins, mRNAs, and miRNAs suggests that MDSC and their exosomes may mediate distinct immune suppressive functions. J Proteome Res. 2018; 17(1):486-498.
17.    Wu S-C, Kuo P-J, Rau C-S, Wu Y-C, Wu C-J, Lu T-H, et al. Subpopulations of exosomes purified via different exosomal markers carry different microRNA contents. Int J Medical Sci.2021;18(4):1058–1066.
18.    Chen L, Wang L, Zhu L, Xu Z, Liu Y, Li Z, Feng L. Exosomes as drug carriers in anti-cancer therapy. Front. Cell Dev. Biol.. 2022;34:728616-728624.
19.    Wu D, Yan J, Shen X, Sun Y, Thulin M, Cai Y, et al. Profiling surface proteins on individual exosomes using a proximity barcoding assa. Nat Commun.2019;10(1):1-10.
20.    Abdolmaleki A, Asadi A, Gurushankar K, Shayan TK, Sarvestani FA. Importance of nano medicine and new drug therapies for cancer. Adv Pharm Bull. 2021;11(3):450-457.
21.    García-Manrique P, Matos M, Gutiérrez G, Pazos C, Blanco-López MC. Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes. J Extracell Vesicles. 2018;7(1):1422676-1422694.
22.    Zhou Q-f, Cai Y-z, Lin X-j. The dual character of exosomes in osteoarthritis: antagonists and therapeutic agents. Acta Biomaterialia. 2020; 105:15-25.
23.    Soluki M, Mahmoudi F, Abdolmaleki A, Asadi A. The Protective Effects of Nanoparticles in the Treatment of Nervous System Injuries: A Narrative Review. JRUMS. 2021;20(9):1027-1048.
24.    Álvarez-Viejo M. Mesenchymal stem cells from different sources and their derived exosomes: a pre-clinical perspective. World J Stem Cells. 2020;12(2):100-109.
25.    Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017; 38(6):754-763.
26.    Yang X-X, Sun C, Wang L, Guo X-L. New insight into isolation, identification techniques and medical applications of exosomes. JCR. 2019; 308:119-129.
27.    Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue barriers. 2016; 4(2):1134415-1134424.
28.    Abdolmaleki A, Akram M, Saeed MM, Asadi A, Kajkolah M. Herbal medicine as neuroprotective potential agent in human and animal models: A historical overview. J Pharm Health Serv Res. 2020;75-82.
29.    Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, et al. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules. 2021;11(1):87-101.
30.    Liu B, Lu Y, Chen X, Muthuraj PG, Li X, Pattabiraman M, et al. Protective role of shiitake mushroom-derived exosome-like nanoparticles in d-galactosamine and lipopolysaccharide-induced acute liver injury in mice. Nutrients. 2020;12(2): 477-492.
31.    Akuma P, Okagu OD, Udenigwe CC. Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front. Sustain. Food Syst. 2019;3:23-40.
32.    Leggio L, Arrabito G, Ferrara V, Vivarelli S, Paternò G, Marchetti B, et al. Mastering the tools: natural versus artificial vesicles in nanomedicine. Adv Healthc Mater 2020;9(18):2000731-2000740.
33.    Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME. MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene. 2015;34(48): 5857-5868.
34.    Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6(1):1-14.
35.    Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M, Wrana JL. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012; 151(7):1542-1556.
36.    Paolillo M, Schinelli S. Integrins and exosomes, a dangerous liaison in cancer progression. Cancers. 2017; 9(8):95-103.
37.    Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer cell. 2014;25(4): 501-515.
38.    Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010; 70(23):9621-9630.
39.    Song H, Liu B, Dong B, Xu J, Zhou H, Na S, et al. Exosome-based delivery of natural products in cancer therapy. Front. Cell Dev Biol. 2021;9:366-382.
40.    Syn N, Wang L, Sethi G, Thiery J-P, Goh B-C. Exosome-mediated metastasis: from epithelial–mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37(7):606-617.
41.    Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks. Int J Mol Med. 2013;32(4):763-767.
42.    Ludwig N, Yerneni SS, Razzo BM, Whiteside TL. Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells. Mol Cancer Res. 2018; 16(11):1798-1808.
43.    Whiteside TL. The role of tumor-derived exosomes in epithelial mesenchymal transition (EMT). Transl Cancer Res. 2017;6(1):S90-92.
44.    You Y, Shan Y, Chen J, Yue H, You B, Shi S, et al. Matrix metalloproteinase 13‐containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Sci. 2015; 106(12):1669-1677.
45.    Franzen C, Blackwell R, Todorovic V, Greco K, Foreman K, Flanigan R, et al. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis. 2015;4(8):163-172.
46.    Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther. 2005; 4(10):1595-1604.
47.    Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 2003;63(15):4331-4337.
48.    Santos JC, Lima NdS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci. Rep. 2018;8(1): 1-11.
49.    Fu X, Liu M, Qu S, Ma J, Zhang Y, Shi T, et al. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J. Exp. Clin. Cancer Res. 2018;37(1):1-18.
50.    Battke C, Ruiss R, Welsch U, Wimberger P, Lang S, Jochum S, et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol Immunother. 2011;60(5):639-648.
51.    Bang C, Thum T. Exosomes: new players in cell–cell communication. Int J Biochem Cell Biol. 2012;44(11): 2060-2064.
52.    Hood JL. Post isolation modification of exosomes for nanomedicine applications. Int J Nanomedicine. 2016; 11(13):1745-1756.
53.    Li X, Zhu G, Yao X, Wang N, Hu R, Kong Q, et al. Celastrol induces ubiquitin-dependent degradation of mTOR in breast cancer cells. OncoTargets Ther. 2018;11:8977-8985.
54.    Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. JCR. 2015; 220:727-737.
55.    Taylor DD, Gercel-Taylor C, editors. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol. 2011:2533-2550.
56.    Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013; 21(7):1345-1357.
57.    Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013; 2(1):20360-20367.
58.    Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30(1):22-51.
59.    Stremersch S, De Smedt SC, Raemdonck K. Therapeutic and diagnostic applications of extracellular vesicles. JCR. 2016;244:167-183.
60.    Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA: CA Cancer J Clin. 2020;70(3):145-164.
61.    Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2020;70(4):209-249.
62.    Harbeck N, Gnant M. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2017; 389(10074):1134-1150.
63.    Murillo OD, Thistlethwaite W, Rozowsky J, Subramanian SL, Lucero R, Shah N, et al. exRNA atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell. 2019;177(2):463-477.
64.    Pereira PM, Ragupathi A, Shmuel S, Mandleywala K, Viola NT, Lewis JS. HER2-targeted PET imaging and therapy of hyaluronan-masked HER2-overexpressing breast cancer. Mol. Pharm. 2019;17(1):327-337.
65.    Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288-300.
66.    Hegmans JP, Bard MP, Hemmes A, Luider TM, Kleijmeer MJ, Prins J-B, et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol. 2004;164(5): 1807-1815.
67.    Goh WJ, Zou S, Ong WY, Torta F, Alexandra AF, Schiffelers RM, et al. Bioinspired cell-derived nanovesicles versus exosomes as drug delivery systems: a cost-effective alternative. Sci Rep. 2017;7(1):1-10.
68.    Wang J, Gan Y, Han P, Yin J, Liu Q, Ghanian S, et al. Ischemia-induced neuronal cell death is mediated by chemokine receptor CX3CR1. Sci Rep. 2018; 8(1):1-11.
69.    Tian T, Zhang H-X, He C-P, Fan S, Zhu Y-L, Qi C, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150: 137-149.
70.    Slack FJ. Regulatory RNAs and the demise of ’junk’ DNA.
        BMC. 2006;7(9):328-330. 
71.    Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179(5):1033-1055.
72.    Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5-18.
73.    Mo D, Jiang P, Yang Y, Mao X, Tan X, Tang X, et al. A tRNA fragment, 5′-tiRNAVal, suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer lett. 2019;457:60-73.
74.    Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, et al. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 2019;21(4): 498-510.
75.    Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 2014;147(2):423-431.
76.    Ozawa P, Alkhilaiwi F. EM de Souza Fonsec a Ribeiro, LR Cavalli, Extracellular vesicles from triple-negative breast cancer cell s promote proliferation and drug resistance in non-tumorigenic breast cells, Breas t Cancer Res Treat. 2018;172(3):713-723.
77.    Pan X, Hong X, Lai J, Cheng L, Cheng Y, Yao M, et al. Exosomal MicroRNA-221-3p confers adriamycin resistance in breast cancer cells by targeting PIK3R1. Front Oncol. 2020;10:441-448.
78.    Das M, Law S. Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. Int J Biochem Cell Biol. 2018;103:115-124.
79.    Shen M, Dong C, Ruan X, Yan W, Cao M, Pizzo D, et al. Chemotherapy-induced extracellular vesicle miRNAs promote breast cancer stemness by targeting ONECUT2. Cancer Res. 2019;79(14):3608-3621.
80.    Han M, Hu J, Lu P, Cao H, Yu C, Li X, et al. Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death Dis. 2020; 11(1):1-15.
81.    Mann J, Yang N, Montpetit R, Kirschenman R, Lemieux H, Goping IS. BAD sensitizes breast cancer cells to docetaxel with increased mitotic arrest and necroptosis. Sci Rep. 2020;10(1):1-11.
82.    Wang G, Liu W, Zou Y, Wang G, Deng Y, Luo J, et al. Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a–MET pathway. EBioMedicine. 2019;40:432-445.
83.    Qi F, Liu X, Wu H, Yu X, Wei C, Huang X, et al. Long noncoding AGAP2-AS1 is activated by SP1 and promotes cell proliferation and invasion in gastric cancer. J Hematol. Oncol. 2017;10(1):1-14.
84.    Zhang W, Xu J, Fang H, Tang L, Chen W, Sun Q, et al. Endothelial cells promote triple‐negative breast cancer cell metastasis via PAI‐1 and CCL5 signaling. FASEB J. 2018; 32(1):276-288.
85.    Dong H, Wang W, Chen R, Zhang Y, Zou K, Ye M, et al. Exosome-mediated transfer of lncRNA‑SNHG14 promotes trastuzumab chemoresistance in breast cancer. J. Hematol Oncol. 2018;53(3):1013-1026.
86.    Xu C, Yang M, Ren Y, Wu C, Wang L. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci. 2016;20(20):4362-4368.
87.    Huang X-Y, Huang Z-L, Huang J, Xu B, Huang X-Y, Xu Y-H, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J. Exp. Clin. Cancer Res . 2020; 39(1): 1-16.
88.    Lao J, Madani J, Puértolas T, Álvarez M, Hernández A, Pazo-Cid R, et al. Liposomal doxorubicin in the treatment of breast cancer patients: a review. J Drug Deliv. 2013; 456409-456422.
89.    Perez AT, Domenech GH, Frankel C, Vogel CL. Pegylated liposomal doxorubicin (Doxil®) for metastatic breast cancer: the Cancer Research Network, Inc., experience. Cancer Investig. 2002;20(2):22-29.
90.    Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome delivery systems for inhalation: a critical review highlighting formulation issues and anticancer applications. Med Princ Pract. 2016;25(2):60-72.
91.    Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, et al. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res. 2018;137:115-170.
92.    De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3(2):133-149.
93.    Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta Rev Cancer. 2014;1846(1):75-87.
94.    Munagala R, Aqil F, Gupta RC. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumor Biol. 2016;37(8):10703-10714.
95.    Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003-2014.
96.    Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R, et al. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep. 2016;6(1):1-15.
97.    N’Diaye ER, Orefice NS, Ghezzi C, Boumendjel A. Chemically Modified Extracellular Vesicles and Applications in Radiolabeling and Drug Delivery. Pharmaceutics. 2022; 14(3):653-668.