A review study on the application of polymeric-based nanoparticles as a novel approach for enhancing the stability of albumins

Document Type : Review Paper


1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran

2 Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

3 Iran Ministry of Health and Medical Education, Deputy Ministry for Education, Academic Staff Member

4 Researcher, Department of Nutrition, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran


Albumin is a liver synthesized protein and the most abundant non-glycosylated plasma protein with a molecular weight of 66 kDa and 585 amino acids. It works as a preservative to maintain plasma volume, osmotic blood pressure, and microvascular integrity. It also works as a blood carrier for endogenous and exogenous substances, improving the stability and survival of drugs and components by corona protein formation around them. However, the presence of different albumin preservatives and stabilizers that can affect other blood cells and binding of preservatives to albumin caused a lower binding capacity of commercial albumin that needs to be addressed. Nowadays nanotechnology is considered a promising field of research in biology and biological products. To the best of our knowledge, this is the first study to review the effects of polymeric nanoparticles on the stability and function of albumin products. A literature review was performed on the publications available on the subject matter from 2011 to 2021. The keywords in different combinations such as “polymeric nanoparticles”, “nanoparticles”, “stability”, and “serum albumin” were searched in databases of PubMed and Scopus. The collected data were then analyzed. According to review results, PLGA, a negatively charged polymer, with lower molecular weight can be introduced as an effective candidate for enhancing albumin stability. Also, it can be concluded that while some cationic nanoparticles can increase the thermal stability of albumin, they have no favorable effects on the albumin structure; thus, they must be modified structurally to be applicable for the production of albumin products. 


1.    Raoufinia R, Mota A, Keyhanvar N, Safari F, Shamekhi S, Abdolalizadeh J. Overview of albumin and its purification methods. Adv Psharm Bull. 2016;6(4):495.
2.    Maciążek-Jurczyk M, Szkudlarek A, Chudzik M, Pożycka J, Sułkowska A. Alteration of human serum albumin binding properties induced by modifications: A review. Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:675-683.
3.    Zadeh Mehrizi T, Mousavi Hosseini K. An overview on the investigation of nanomaterials’ effect on plasma components: immunoglobulins and coagulation factor VIII, 2010–2020 review. Nanoscale Adv. 2021;3(13):3730-3745. 
4.    Akbarzadehlaleh P, Mirzaei M, Mashahdi-Keshtiban M, Shamsasenjan K, Heydari H. PEGylated human serum albumin: review of PEGylation, purification and characterization methods. Adv Pharm Bull. 2016;6(3):309.
5.    Bteich M. An overview of albumin and alpha-1-acid glycoprotein main characteristics: highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon. 2019;5(11):e02879.
6.    Sudlow G, Birkett D, Wade D. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol. 1975;11(6):824-832.
7.    Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 2016;4(1):1-12.
8.    Doweiko JP, Nompleggi DJ. Reviews: role of albumin in human physiology and pathophysiology. J Parenter Enteral Nutr. 1991;15(2):207-211.
9.    Chien S-C, Chen C-Y, Lin C-F, Yeh H-I. Critical appraisal of the role of serum albumin in cardiovascular disease. Biomark Res. 2017;5(1):31.
10.    Kobayashi L, Costantini TW, Coimbra R. Hypovolemic shock resuscitation. Surg Clin North Am. 2012; 92(6): 1403-23.
11.    Warden GD. Burn shock resuscitation. World J Surg. 1992; 16(1):16-23.
12.    Caraceni P, Tufoni M, Bonavita ME. Clinical use of albumin. Blood Transfus. 2013;11(Suppl 4):s18.
13.    Henriksen J. Patient survival after human albumin administration. Ugeskr Laeger. 2002;164(9):1227.
14.    Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016; 13(11):1609-1623.
15.    Schwarz CM, Masteling M, Vacz G, Hornyak I, Lacza Z. Serum albumin as a local therapeutic agent in cell therapy and tissue engineering. Biofactors. 2017;43(3):315-330.
16.    Belousov A. Concept to the Problems of Transfusion of Albumin. Biomed J Sci Tech Res. 2019;18(4):13765-13769.
17.    Pulimood TB, Park GR. Debate: Albumin administration should be avoided in the critically ill. Crit Care. 2000;4(3): 1-5.
18.    Li XY, Li TH, Guo JS, Wei Y, Jing XB, Chen XS, et al. PEGylation of bovine serum albumin using click chemistry for the application as drug carriers. Biotechnol Prog. 2012;28(3): 856-861.
19.    Scott MD, Nakane N, Maurer-Spurej E. Cryoprotection of Platelets by Grafted Polymers.  Cryopreservation-Current Advances and Evaluations: IntechOpen;2019.
20.    Gholami Z, Hashemi Najafabadi S, Soleimani M. Simultaneous Camouflage of Major and Minor Antigens on Red Blood Cell Surface With Activated mPEGs. Iran J Biotechnol. 2014;12(2):15-25.
21.    Mehrizi TZ. Hemocompatibility and Hemolytic Effects of Functionalized Nanoparticles on Red Blood Cells: A Recent Review Study. Nano. 2021;16(08):2130007.
22.    Mehrizi TZ. An Overview of the Latest Applications of Platelet-Derived Microparticles and Nanoparticles in Medical Technology 2010-2020. 2022;22(6):524-539. 
23.    Zadeh Mehrizi T, Amini Kafiabad S. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: a review. J Pharm Pharmacol. 2022;74(2):179–190.
24.    Zadeh Mehrizi T, Eshghi P. Investigation of the effect of nanoparticles on platelet storage duration 2010–2020. Int Nano Lett. 2022;12(1):15-45.
25.    Elieh-Ali-Komi D, Hamblin MR. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res. 2016;4(3):411.
26.    Bellich B, D’Agostino I, Semeraro S, Gamini A, Cesàro A. “The good, the bad and the ugly” of chitosans. Marine drugs. 2016;14(5):99.
27.    Zadeh Mehrizi T, Khamesipour A, Shafiee Ardestani M, Ebrahimi Shahmabadi H, Haji Molla Hoseini M, Mosaffa N, et al. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus. Int J Nanomedicine. 2019;14:7593-7607. 
28.    Mehrizi TZ, Rezayat SM, Ardestani MS, Shahmabadi HE, Ramezani A. A review study about the effect of chitosan nanocarrier on improving the efficacy of amphotericin B in the treatment of leishmania from 2010 to 2020. Curr Drug Deliv. 2021;18(9):1234-1243. 
29.    Mehrizi TZ, Ardestani MS, Molla Hoseini MH, Khamesipour A, Mosaffa N, Ramezani A. Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine (Lond). 2018; 13(24):3129-3147. 
30.    Zadeh Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, Khamesipour A, Mosaffa N, Ramezani A. Novel Nanosized Chitosan-Betulinic Acid Against Resistant Leishmania Major and First Clinical Observation of such parasite in Kidney. Sci Rep. 2018;8(1):11759. 
31.    Koev S, Dykstra P, Luo X, Rubloff G, Bentley W, Payne G, et al. Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab Chip. 2010;10(22):3026-3042.
32.    Wang Y-W, Liu C-C, Cherng J-H, Lin C-S, Chang S-J, Hong Z-J, et al. Biological Effects of Chitosan-Based Dressing on Hemostasis Mechanism. Polymers. 2019;11(11):1906.
33.    Cadenas E, Packer L. Thiol Redox Transitions in Cell Signaling, Part A: Chemistry and Biochemistry of Low Molecular Weight and Protein Thiols: Academic Press;2010.
34.    Bekale L, Agudelo D, Tajmir-Riahi H. Effect of polymer molecular weight on chitosan–protein interaction. Colloids Surf B Biointerfaces. 2015; 125: 309-17.
35.    Li G, Huang J, Chen T, Wang X, Zhang H, Chen Q. Insight into the interaction between chitosan and bovine serum albumin. Carbohydrate polymers. 2017;176:75-82.
36.    Moraes A, Moreira Filho R, Passos C, Cunha A, Silva LAe, Freitas L, et al. Hemocompatibility of 2‐N‐3, 6‐O‐sulfated chitosan films. J Appl Polym Sci. 2019; 136(9):47128.
37.    Shagholani H, Ghoreishi SM, Mousazadeh M. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application. Int J Biol Macromol. 2015;78: 130-136.
38.    Sen S, Konar S, Das B, Pathak A, Dhara S, Dasgupta S, et al. Inhibition of fibrillation of human serum albumin through interaction with chitosan-based biocompatible silver nanoparticles. RSC Adv. 2016;6(49):43104-43115.
39.    Benghanem S, Chetouani A, Elkolli M, Bounekhel M, Benachour D. Effects of physical and chemical modification on biological activities of chitosan/carboxymethylcelluse based hydrogels. J Chil Chem Soc. 2017;62(1):3376-3380.
40.    Karpuraranjith M, Thambidurai S. Synergistic effect of chitosan-zinc-tin oxide colloidal nanoparticle and their binding performance on bovine albumin serum. Mater Chem Phys. 2017;199:370-378.
41.    Liu Y, Ma X, Zhou T, Wang R, Hou J, Tang J, et al. Layer by layer assembled phosphorylcholine groups on paclitaxel/chitosan nanofibers coatings for hemocompatibility improvement. Surf Coat Technol. 2019;357:984-992.
42.    Qashqoosh MT, Alahdal FA, Manea YK, Zakariya SM, Naqvi S. Synthesis, characterization and spectroscopic studies of surfactant loaded antiulcer drug into Chitosan nanoparticles for interaction with bovine serum albumin. Chem Phys. 2019;527:110462.
43.    Manea YK, Khan AM, Q                    ashqoosh MT, Wani AA, Shahadat M. Ciprofloxacin-supported chitosan/polyphosphate nanocomposite to bind bovine serum albumin: Its application in drug delivery. J Mol Liq. 2019;292:111337.
44.    Yan S, Tu M-M, Qiu Y-R. The hemocompatibility of the modified polysulfone membrane with 4-(chloromethyl) benzoic acid and sulfonated hydroxypropyl chitosan. Colloids Surf B Biointerfaces. 2020;188:110769.
45.    Ghalia MA, Dahman Y. Biodegradable poly (lactic acid)-based scaffolds: synthesis and biomedical applications. J Polym Res. 2017;24(5):74.
46.    Silva A, Soema P, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Human vaccine Hum Vaccin Immunother. 2016;12(4):1056-1069.
47.    Ansary RH, Awang MB, Rahman MM. Biodegradable poly (D, L-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs-A review. Trop J Pharm Res. 2014;13(7):1179-1190.
48.    Shubhra QT, Tóth J, Gyenis J, Feczkó T. Surface modification of HSA containing magnetic PLGA nanoparticles by poloxamer to decrease plasma protein adsorption. Colloids Surf B Biointerfaces. 2014;122:529-536.
49.    Hyun H, Park J, Willis K, Park JE, Lyle LT, Lee W, et al. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials. 2018;180:206-224.
50.    Samkange T, D’Souza S, Obikeze K, Dube A. Influence of PEGylation on PLGA nanoparticle properties, hydrophobic drug release and interactions with human serum albumin.  J Pharm Pharmacol. 2019;71(10):1497-1507.
51.    Kebriaezadeh A, Ashrafi S, Rasouli R, Ebrahimi SES, Hamedani MP, Assadi A, et al. Gadobutrol-dendrimer effects on metastatic and apoptotic gene expression. Adv Nano Res. 2016;4(2):145.
52.    Roeven E, Scheres L, Smulders MM, Zuilhof H. Design, Synthesis, and Characterization of Fully Zwitterionic, Functionalized Dendrimers. ACS Omega. 2019;4(2):3000-11.
53.    Mehrizi TZ, Ardestani MS, Khamesipour A, Hoseini MHM, Mosaffa N, Anissian A, et al. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. J Mater Sci Mater Med. 2018;29(8): 125. 
54.    Zadeh Mehrizi T, Mosaffa N, Khamesipour A, Haji Molla Hoseini M, Ebrahimi Shahmabadi H, Shafiee Ardestani M, et al. A Novel Nanoformulation for Reducing the Toxicity and Increasing the Efficacy of Betulinic Acid Using Anionic Linear Globular Dendrimer. J Nanostruct. 2021;11(1):143-152. 
55.    Lombardo D, Calandra P, Bellocco E, Laganà G, Barreca D, Magazù S, et al. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. Biochim Biophys Acta Biomembr. 2016;1858(11):2769-2777.
56.    Chitlur M, Ware E, Kannan S, Hollon W, Buck S, Rajyalakshmi I, et al. Influence Of Nanopolymers With Different End‐Functionalities On Platelets And Coagulation. An Ex‐Vivo Study. Blood. 2006;108(11):4038.
57.    Hsu HJ, Bugno J, Lee Sr, Hong S. Dendrimer‐based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(1):e1409.
58.    Zhang H-M, Lou K, Cao J, Wang Y-Q. Interaction of a hydrophobic-functionalized PAMAM dendrimer with bovine serum albumin: thermodynamic and structural changes. Langmuir. 2014;30(19):5536-5544.
59.    Chanphai P, Froehlich E, Mandeville J, Tajmir-Riahi H. Protein conjugation with PAMAM nanoparticles: Microscopic and thermodynamic analysis. Colloids Surf B Biointerfaces. 2017;150:168-174.
60.    Serchenya T, Shcharbin D, Shyrochyna I, Sviridov O, Terekhova M, Dzmitruk V, et al. Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimers. Colloids Surf B Biointerfaces. 2019; 179:226-232.
61.    Tokarczyk K, Jachimska B. Characterization of G4 PAMAM dendrimer complexes with 5-fluorouracil and their interactions with bovine serum albumin. Colloids Surf A Physicochem Eng Asp. 2019;561:357-363.
62.    Onaș AM, Bîru IE, Gârea SA, Iovu H. Novel Bovine Serum Albumin Protein Backbone Reassembly Study: Strongly Twisted β-Sheet Structure Promotion upon Interaction with GO-PAMAM. Polymers. 2020;12(11):2603.
63.    Ciepluch K, Biehl R, Bryszewska M, Arabski M. Poly (propylene imine) dendrimers can bind to PEGylated albumin at PEG and albumin surface: Biophysical examination of a PEGylated platform to transport cationic dendritic nanoparticles. Biopolymers. 2020;111(9):e23386.
64.    González-García E, Ulloa CEG, de la Mata FJ, Marina ML, García MC. Sulfonate-terminated carbosilane dendron-coated nanotubes: A greener point of view in protein sample preparation. Anal Bioanal Chem. 2017;409(22): 5337-5348.
65.    González-García E, Sánchez-Nieves J, de la Mata FJ, Marina ML, García MC. Feasibility of cationic carbosilane dendrimers for sustainable protein sample preparation. Colloids Surf B Biointerfaces. 2020;186:110746.
66.    Shcharbin D, Pedziwiatr-Werbicka E, Serchenya T, Cyboran-Mikolajczyk S, Prakhira L, Abashkin V, et al. Role of cationic carbosilane dendrons and metallic core of functionalized gold nanoparticles in their interaction with human serum albumin. Int J Biol Macromol. 2018;118:1773-1780.
67.    Wrobel D, Müllerová M, Strašák T, Růžička K, Fulem M, Kubíková R, et al. Glucose-modified carbosilane dendrimers: Interaction with model membranes and human serum albumin. Int J Pharm. 2020;579:119138.
68.    Sisavath N, Le Saux T, Leclercq L, Cottet H. Effect of dendrimer generation on the interactions between human serum albumin and dendrigraft polylysines. Langmuir. 2014; 30(15):4450-4457.
69.    Moreno S, Szwed A, El Brahmi N, Milowska K, Kurowska J, Fuentes-Paniagua E, et al. Synthesis, characterization and biological properties of new hybrid carbosilane–viologen–phosphorus dendrimers. RSC Adv. 2015;5(33):25942-25958.
70.    Ran Q, Xu X, Dey P, Yu S, Lu Y, Dzubiella J, et al. Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding. J Chem Phys. 2018;149(16) 163324.
71.    Santos PP, da Silva Nunes A, Exposito de Queiroz AAA, Alencar de Queiroz AA. Interactions of polyglycerol dendrimers with human serum albumin: insights from fluorescence spectroscopy and computational modeling analysis. J Biomater Sci Polym Ed. 2019;30(17):1575-1590.
72.    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013; 8(1):102.
73.    Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol. 2019;10(1):11.
74.    Thakur R, Das A, Chakraborty A. Interaction of human serum albumin with liposomes of saturated and unsaturated lipids with different phase transition temperatures: a spectroscopic investigation by membrane probe PRODAN. RSC Adv. 2014;4(28):14335-14347.
75.    Kristensen K, Urquhart AJ, Thormann E, Andresen TL. Binding of human serum albumin to PEGylated liposomes: insights into binding numbers and dynamics by fluorescence correlation spectroscopy. Nanoscale. 2016;8(47):19726-19736.
76.    Foteini P, Pippa N, Naziris N, Demetzos C. Physicochemical study of the protein–liposome interactions: Influence of liposome composition and concentration on protein binding. J Liposome Res. 2019;29(4):313-321.
77.    Ragi C, Sedaghat‐Herati M, Ouameur AA, Tajmir‐Riahi H. The effects of poly (ethylene glycol) on the solution structure of human serum albumin. Biopolymers: Original Research on Biomolecules. 2005;78(5):231-2366.
78.    Fornaguera C, Calderó G, Mitjans M, Vinardell MP, Solans C, Vauthier C. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale. 2015;7(14):6045-6058.
79.    Ghosh P, Patwari J, Dasgupta S. Complexation with human serum albumin facilitates sustained release of morin from polylactic-co-glycolic acid nanoparticles. J Phys Chem B. 2017;121(8):1758-1770.