Nano-fluorophores as enhanced diagnostic tools to improve cellular imaging

Document Type : Review Paper


Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603 103, India


Biological events can be mapped in real-time using fluorescent images at high spatial resolution through the use of a powerful tool called fluorescence, and it is necessary to have ultra-bright fluorescent probes. The detrimental effects associated with the existing fluorescence imaging probes and contrast agents are the primary reason behind the greater involvement of nanotechnology. Developing advanced particles at the molecular and supramolecular levels is the only way to address the constraints underlying the current scenario. Nanosized structures dominate in multiple fields, especially in nanotheranostics, due to their higher quantum yield, negligible photobleaching, excellent biocompatibility, tunable optical properties, and improved circulation half-lives. Nanofluorophores, which are nanoparticles encapsulated or doped with fluorescent dyes, play a crucial role in fluorescence-based imaging modality by providing noninvasive real-time monitoring of the inner machinery of the anatomical and cellular structures. In addition to fluorescent inorganic and organic nanoparticles, there are labeled hydrophilic and hydrophobic nanostructures, semiconducting dots, carbon dots, as well as upconversion nanomaterials, etc., which are widely used in fluorescent imaging. A comprehensive literature survey has been provided in this review since intense studies are needed to clear the preclinic stage, thus opening up opportunities for future biomedical applications.


1. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545-580.
2.    Pichler BJ, Wehrl HF, Judenhofer MS. Latest advances in molecular imaging instrumentation. J Nucl Med. 2008;49:5S-23S.
3.    Hsiao WW-W, Hui YY, Tsai P-C, Chang H-C. Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc Chem Res. 2016;49(3):400-407.
4.    Gowtham P, Haribabu V, Prabhu AD, Pallavi P, Girigoswami K, Girigoswami A. Impact of nanovectors in multimodal medical imaging. Nanomed J. 2022;9(2):107-130.
5.    Sharmiladevi P, Girigoswami K, Haribabu V, Girigoswami A. Nano-enabled theranostics for cancer. Mater Adv. 2021;2:2876-2891.
6.    Haribabu V, Girigoswami K, Sharmiladevi P, Girigoswami A. Water–Nanomaterial Interaction to Escalate Twin-Mode Magnetic Resonance Imaging. ACS Biomater Sci Eng. 2020;6(8):4377-4389.
7.    Haribabu V, Sharmiladevi P, Akhtar N, Farook AS, Girigoswami K, Girigoswami A. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr Drug Del. 2019;16(3):233-241.
8.    Sharmiladevi P, Haribabu V, Girigoswami K, Farook AS, Girigoswami A. Effect of mesoporous nano water reservoir on MR relaxivity. Sci Rep. 2017;7(1):1-7.
9.    Girigoswami A, Yassine W, Sharmiladevi P, Haribabu V, Girigoswami K. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci Rep. 2018;8(1):1-7.
10.    Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev. 2014;114(12):6130-6178.
11.    Farka Z, Jurik T, Kovář D, Trnkova L, Skládal P. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev. 2017;117(15):9973-10042.
12.    Lakowicz JR. Principles of fluorescence spectroscopy: Springer; 2006.
13.    Lichtman JW, Conchello J-A. Fluorescence microscopy. Nat Methods. 2005;2(12):910-919.
14.    Feng S, Zhu L, Wang D, Li C, Chen Y, Chen X, et al. Rigidity‐Tuned Full‐Color Emission: Uncommon Luminescence Change from Polymer Free‐Volume Variations. Adv Mater. 2022:2201337.
15.    Xu Z, Zhang Q, Li X, Huang X. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods. Chem Eng J. 2022;429:131688.
16.    Godumala M, Kumar AV, Chandrasekar R. Room-temperature phosphorescent organic materials for optical waveguides. J Mater Chem C. 2021;9(40):14115-14132.
17.    Sasaki S, Drummen GP, Konishi G-i. Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J Mater Chem C. 2016;4(14):2731-2743.
18.    Qi S, Kwon N, Yim Y, Nguyen V-N, Yoon J. Fine-tuning the electronic structure of heavy-atom-free BODIPY photosensitizers for fluorescence imaging and mitochondria-targeted photodynamic therapy. Chem Sci. 2020;11(25):6479-6484.
19.    Wu Q-Y, Zhou T-H, Du Y, Ye B, Wang W-L, Hu H-Y. Characterizing the molecular weight distribution of dissolved organic matter by measuring the contents of electron-donating moieties, UV absorbance, and fluorescence intensity. Environ Int. 2020;137:105570.
20.    Geng T, Zhu Z, Zhang W, Wang Y. A nitrogen-rich fluorescent conjugated microporous polymer with triazine and triphenylamine units for high iodine capture and nitro aromatic compound detection. J Mater Chem A. 2017;5(16):7612-7617.
21.    Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2010;110(5):2641-2684.
22.    Chang CW, Sud D, Mycek MA. Fluorescence lifetime imaging microscopy. Methods Cell Biol. 2007;81:495-524.
23.    Hutchinson CL, Lakowicz J, Sevick-Muraca EM. Fluorescence lifetime-based sensing in tissues: a computational study. Biophys J. 1995;68(4):1574-1582.
24.    Munishkina LA, Fink AL. Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta Biomembr. 2007;1768(8):1862-1885.
25.    Würth C, González MG, Niessner R, Panne U, Haisch C, Genger UR. Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods–Providing the basis for fluorescence quantum yield standards. Talanta. 2012;90:30-37.
26.    Rurack K. Fluorescence quantum yields: methods of determination and standards.  Standardization and quality assurance in fluorescence measurements I: Springer; 2008. p. 101-45.
27.    Mohanty J, Jaffe JS, Schulman ES, Raible DG. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods. 1997;202(2):133-141.
28.    Hasegawa M, Sugimura T, Suzaki Y, Shindo Y, Kitahara A. Microviscosity in water pool of Aerosol-OT reversed micelle determined with viscosity-sensitive fluorescence probe, Auramine O, and fluorescence depolarization of xanthene dyes. J Phys Chem. 1994;98(8):2120-2124.
29.    Jaiganesh T, Rani JDV, Girigoswami A. Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth. Spectrochim Acta A Mol Biomol Spectrosc. 2012;92:29-32.
30.    Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28(31):4717-4732.
31.    Yariv E, Schultheiss S, Saraidarov T, Reisfeld R. Efficiency and photostability of dye-doped solid-state lasers in different hosts. Opt Mater. 2001;16(1-2):29-38.
32.    Demchenko AP. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc. 2020;8(2):022001.
33.    Gupta N, Todi K, Narayan T, Malhotra B. Graphitic carbon nitride-based nanoplatforms for biosensors: design strategies and applications. Mater Today Chem. 2022;24:100770.
34.    Zheng Y, Zhou Y, Cui X, Yin H, Ai S. Enhanced photoactivity of CdS nanorods by MXene and ZnSnO3: Application in photoelectrochemical biosensor for the effect of environmental pollutants on DNA hydroxymethylation in wheat tissues. Mater Today Chem. 2022;24:100878.
35.    Eagle FW, Park N, Cash M, Cossairt BM. Surface Chemistry and Quantum Dot Luminescence: Shell Growth, Atomistic Modification, and Beyond. ACS Energy Lett. 2021;6(3):977-984.
36.    Ding F, Fan Y, Sun Y, Zhang F. Beyond 1000 Nm Emission Wavelength: Recent Advances in Organic and Inorganic Emitters for Deep‐Tissue Molecular Imaging. Adv. Healthc Mater. 2019;8(14):1900260.
37.    McHugh KJ, Jing L, Behrens AM, Jayawardena S, Tang W, Gao M, et al. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv Mater. 2018;30(18):1706356.
38.    Åkerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA. 2002;99(20):12617-12621.
39.    Yu X, Chen L, Deng Y, Li K, Wang Q, Li Y, et al. Fluorescence analysis with quantum dot probes for hepatoma under one-and two-photon excitation. J Fluoresc. 2007;17(2):243-247.
40.    Tiwari DK, Jin T, Behari J. Bio-distribution and toxicity assessment of intravenously injected anti-HER2 antibody conjugated CdSe/ZnS quantum dots in Wistar rats. Int J Nanomed. 2011;6:463.
41.    Lin H, Wang C, Wu J, Xu Z, Huang Y, Zhang C. Colloidal synthesis of MoS 2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New J Chem. 2015;39(11):8492-8497.
42.    Brunetti J, Riolo G, Gentile M, Bernini A, Paccagnini E, Falciani C, et al. Near-infrared quantum dots labelled with a tumor selective tetrabranched peptide for in vivo imaging. J Nanobiotechnology. 2018;16(1):1-10.
43.    Kwon J, Jun S, Choi S, Mao X, Kim J, Koh E, et al. FeSe quantum dots for in vivo multiphoton biomedical imaging. Sci Adv. 2019;5(12):eaay0044.
44.    Chen H, Liu Z, Wei B, Huang J, You X, Zhang J, et al. Redox responsive nanoparticle encapsulating black phosphorus quantum dots for cancer theranostics. Bioact Mater. 2021;6(3):655-665.
45.    Li S-L, Jiang P, Hua S, Jiang F-L, Liu Y. Near-infrared Zn-doped Cu 2 S quantum dots: an ultrasmall theranostic agent for tumor cell imaging and chemodynamic therapy. Nanoscale. 2021;13(6):3673-3685.
46.    Rafieerad A, Yan W, Sequiera GL, Sareen N, Abu‐El‐Rub E, Moudgil M, et al. Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv Healthc Mater. 2019;8(16):1900569.
47.    Kim MW, Jeong HY, Kang SJ, Jeong IH, Choi MJ, You YM, et al. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics. 2019;9(3):837.
48.    Hua X-W, Bao Y-W, Chen Z, Wu F-G. Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale. 2017;9(30):10948-10960.
49.    Chakraborty SK, Fitzpatrick JA, Phillippi JA, Andreko S, Waggoner AS, Bruchez MP, et al. Cholera toxin B conjugated quantum dots for live cell labeling. Nano Lett. 2007;7(9):2618-2626.
50.    Cai W, Chen X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat Protoc. 2008;3(1):89-96.
51.    He X, Gao L, Ma N. One-step instant synthesis of protein-conjugated quantum dots at room temperature. Sci Rep. 2013;3(1):1-11.
52.    Cambi A, Lidke DS, Arndt-Jovin DJ, Figdor CG, Jovin TM. Ligand-conjugated quantum dots monitor antigen uptake and processing by dendritic cells. Nano Lett. 2007;7(4):970-977.
53.    Chakravarthy KV, Davidson BA, Helinski JD, Ding H, Law W-C, Yong K-T, et al. Doxorubicin conjugated quantum dots to target alveolar macrophages/inflammation. Nanomedicine. 2011;7(1):88.
54.    Ruan G, Agrawal A, Marcus AI, Nie S. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc. 2007;129(47):14759-14766.
55.    Singh SP. Multifunctional magnetic quantum dots for cancer theranostics. J  Biomed Nanotechnol. 2011;7(1):95-97.
56.    Tiron A, Stan CS, Luta G, Uritu CM, Vacarean-Trandafir I-C, Stanciu GD, et al. Manganese-Doped N-Hydroxyphthalimide-Derived Carbon Dots—Theranostics Applications in Experimental Breast Cancer Models. Pharmaceutics. 2021;13(11):1982.
57.    Bao X, Yuan Y, Chen J, Zhang B, Li D, Zhou D, et al. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci Appl. 2018;7(1):1-11.
58.    Li Y, Bai G, Zeng S, Hao J. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy. ACS Appl Mater Interfaces. 2019;11(5):4737-4744.
59.    Zhao H, Duan J, Xiao Y, Tang G, Wu C, Zhang Y, et al. Microenvironment-driven cascaded responsive hybrid carbon dots as a multifunctional theranostic nanoplatform for imaging-traceable gene precise delivery. Chem Mater. 2018;30(10):3438-3453.
60.    Wu D, Li BL, Zhao Q, Liu Q, Wang D, He B, et al. Assembling Defined DNA Nanostructure with Nitrogen‐Enriched Carbon Dots for Theranostic Cancer Applications. Small. 2020;16(19):1906975.
61.    Wu F, Yue L, Su H, Wang K, Yang L, Zhu X. Carbon dots@ platinum porphyrin composite as theranostic nanoagent for efficient photodynamic cancer therapy. Nanoscale Res Lett. 2018;13(1):1-10.
62.    He X, Luo Q, Zhang J, Chen P, Wang H-J, Luo K, et al. Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale. 2019;11(27):12973-12982.
63.    Pei M, Jia X, Liu P. Design of Janus-like PMMA-PEG-FA grafted fluorescent carbon dots and their nanoassemblies for leakage-free tumor theranostic application. Mater Des. 2018;155:288-296.
64.    Su Y, Liu S, Guan Y, Xie Z, Zheng M, Jing X. Renal clearable Hafnium-doped carbon dots for CT/Fluorescence imaging of orthotopic liver cancer. Biomaterials. 2020;255:120110.
65.    Dehvari K, Liu KY, Tseng P-J, Gedda G, Girma WM, Chang J-Y. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. J Taiwan Inst Chem Eng. 2019;95:495-503.
66.    Chen Q, Sun S, Lin H, Li Z, Wu A, Liu X, et al. Supra-Carbon Dots Formed by Fe3+-Driven Assembly for Enhanced Tumor-Specific Photo-Mediated and Chemodynamic Synergistic Therapy. ACS Appl Bio Mater. 2021;4(3):2759-2768.
67.    Zhang M, Zheng T, Sheng B, Wu F, Zhang Q, Wang W, et al. Mn2+ complex-modified polydopamine-and dual emissive carbon dots based nanoparticles for in vitro and in vivo trimodality fluorescent, photothermal, and magnetic resonance imaging. Chem Eng J. 2019;373:1054-1063.
68.    Zhao S, Tian R, Shao B, Feng Y, Yuan S, Dong L, et al. Designing of UCNPs@ Bi@ SiO2 hybrid theranostic nanoplatforms for simultaneous multimodal imaging and photothermal therapy. ACS Appl Mater Interfaces. 2018;11(1):394-402.
69.    Lakshmanan A, Akasov RA, Sholina NV, Demina PA, Generalova AN, Gangadharan A, et al. Nanocurcumin-Loaded UCNPs for Cancer Theranostics: Physicochemical Properties, In Vitro Toxicity, and In Vivo Imaging Studies. Nanomaterials. 2021;11(9):2234.
70.    Jin X, Zeng Q, Zheng J, Xing D, Zhang T. Aptamer-functionalized upconverting nanoformulations for light-switching cancer-specific recognition and in situ photodynamic–chemo sequential theranostics. ACS Appl Mater Interfaces. 2020;13(8):9316-9328.
71.    Zhou S, Ding C, Wang Y, Jiang W, Fu J. Supramolecular valves functionalized rattle-structured UCNPs@ hm-SiO2 nanoparticles with controlled drug release triggered by quintuple stimuli and dual-modality imaging functions: a potential theranostic nanomedicine. ACS Biomater Sci Eng. 2019;5(11):6022-6035.
72.    Wang Y, Li Y, Zhang Z, Wang L, Wang D, Tang BZ. Triple‐Jump Photodynamic Theranostics: MnO2 Combined Upconversion Nanoplatforms Involving a Type‐I Photosensitizer with Aggregation‐Induced Emission Characteristics for Potent Cancer Treatment. Adv Mater. 2021;33(41):2103748.
73.    Wang M, Zhang Y, Ng M, Skripka A, Cheng T, Li X, et al. One-pot synthesis of theranostic nanocapsules with lanthanide doped nanoparticles. Chem Sci. 2020;11(26):6653-6661.
74.    Gulzar A, Xu J, Yang D, Xu L, He F, Gai S, et al. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans. 2018;47(11):3931-3939.
75.    Ramírez-García G, Honorato-Colin MÁ, De la Rosa E, López-Luke T, Panikar SS, de Jesús Ibarra-Sánchez J, et al. Theranostic nanocomplex of gold-decorated upconversion nanoparticles for optical imaging and temperature-controlled photothermal therapy. J Photochem Photobiol A Chem. 2019;384:112053.
76.    Shiah JV, Grandis JR, Johnson DE. Targeting STAT3 with Proteolysis Targeting Chimeras and Next-Generation Antisense Oligonucleotides. Mol Cancer Ther. 2021;20(2):219-228.
77.    Meng L, Wang Q, Wang L, Zhao Z, Xin G-Z, Zheng Z, et al. miR122-controlled all-in-one nanoplatform for in situ theranostic of drug-induced liver injury by visualization imaging guided on-demand drug release. Mater Today Bio. 2021;12:100157.
78.    Zhao S, Tian R, Shao B, Feng Y, Yuan S, Dong L, et al. UCNP–Bi2Se3 upconverting nanohybrid for upconversion luminescence and CT imaging and photothermal therapy. Chem Eur J. 2020;26(5):1127-1135.
79.    Liu C, Zhang F, Hu J, Gao W, Zhang M. A mini review on pH-sensitive photoluminescence in carbon nanodots. Front Chem. 2021:1242.
80.    Sharmiladevi P, Akhtar N, Haribabu V, Girigoswami K, Chattopadhyay S, Girigoswami A. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl Bio Mater. 2019;2(4):1634-1642.
81.    Islam M, Lantada AD, Mager D, Korvink JG. Carbon‐Based Materials for Articular Tissue Engineering: From Innovative Scaffolding Materials toward Engineered Living Carbon. Adv Healthc Mater. 2022;11(1):2101834.
82.    Tarvirdipour S, Huang X, Mihali V, Schoenenberger C-A, Palivan CG. Peptide-based nanoassemblies in gene therapy and diagnosis: paving the way for clinical application. Molecules. 2020;25(15):3482.
83.    Wang J, Liu G, Cham-Fai Leung K, Loffroy R, Lu P-X, Wang XJ. Opportunities and challenges of fluorescent carbon dots in translational optical imaging. Curr Pharm Des. 2015;21(37):5401-5416.
84.    Zhou B, Guo Z, Lin Z, Zhang L, Jiang B-P, Shen X-C. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg Chem Front. 2019;6(5):1116-1128.
85.    Shaner NC, Patterson GH, Davidson MW. Advances in fluorescent protein technology. J Cell Sci. 2007;120(24):4247-4260.
86.    Mansouri M, Strittmatter T, Fussenegger M. Light‐controlled mammalian cells and their therapeutic applications in synthetic biology. Adv Sci. 2019;6(1):1800952.
87.    Hoffman RM. Application of GFP imaging in cancer. Lab Invest. 2015;95(4):432-452.
88.    Deng H, Yan S, Huang Y, Lei C, Nie Z. Design strategies for fluorescent proteins/mimics and their applications in biosensing and bioimaging. TrAC, Trends Anal Chem. 2020;122:115757.
89.    Gilad AA, Winnard Jr PT, van Zijl PC, Bulte JW. Developing MR reporter genes: promises and pitfalls. NMR Biomed. 2007;20(3):275-290.
90.    Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67(1):509-544.
91.    Pakhomov AA, Martynov VI. GFP family: structural insights into spectral tuning. Chem Biol. 2008;15(8):755-764.
92.    Christou NE, Giandoreggio-Barranco K, Ayala I, Glushonkov O, Adam V, Bourgeois D, et al. Disentangling Chromophore States in a Reversibly Switchable Green Fluorescent Protein: Mechanistic Insights from NMR Spectroscopy. J Am Chem Soc. 2021;143(19):7521-7530.
93.    Romei MG, Boxer SG. Split green fluorescent proteins: scope, limitations, and outlook. Annu Rev Biophys. 2019;48:19.
94.    Razansky D, Klohs J, Ni R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur J Nucl Med Mol Imag. 2021;48(13):4152-4170.
95.    Wu W, Li Z. Nanoprobes with aggregation-induced emission for theranostics. Mater Chem Front. 2021;5(2):603-626.
96.    Zhang L, Che W, Yang Z, Liu X, Liu S, Xie Z, et al. Bright red aggregation-induced emission nanoparticles for multifunctional applications in cancer therapy. Chem Sci. 2020;11(9):2369-2374.
97.    Zalmi GA, Jadhav RW, Mirgane HA, Bhosale SV. Recent Advances in Aggregation-Induced Emission Active Materials for Sensing of Biologically Important Molecules and Drug Delivery System. Molecules. 2021;27(1):150.
98.    Zhao E, Gu X. Aggregation-Induced Emission (AIE) Probes for Cell Imaging.  Fluorescent Materials for Cell Imaging: Springer; 2020. p. 181-215.
99.    Wang Y, Zhang Y, Wang J, Liang X-J. Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Adv Drug Del Rev. 2019;143:161-176.
100.    Srivatsan A, Pera P, Joshi P, Marko AJ, Durrani F, Missert JR, et al. Highlights on the imaging (nuclear/fluorescence) and phototherapeutic potential of a tri-functional chlorophyll-a analog with no significant toxicity in mice and rats. J Photochem Photobiol B Biol. 2020;211:111998.
101.    Loudos G, Rouchota MT. In vivo Imaging as a Tool to Noninvasively Study Nanosystems. Drug Delivery Nanosystems. 2019:339-364.
102.    Chaudhari AJ, Badawi RD. Application-specific nuclear medical in vivo imaging devices. Phys Med Biol. 2021;66(10):10TR01.
103.    Iravani A, Hicks RJ. Imaging the cancer immune environment and its response to pharmacologic intervention, part 1: the role of 18F-FDG PET/CT. J Nucl Med. 2020;61(7):943-950.
104.    Rahman WT, Wale DJ, Viglianti BL, Townsend DM, Manganaro MS, Gross MD, et al. The impact of infection and inflammation in oncologic 18F-FDG PET/CT imaging. Biomed Pharmacother. 2019;117:109168.
105.    Bernhard W, Barreto K, El-Sayed A, Gonzalez C, Viswas RS, Toledo D, et al. Pre-clinical study of IRDye800CW-nimotuzumab formulation, stability, pharmacokinetics, and safety. BMC Cancer. 2021;21(1):1-13.
106.    Wellens LM, Deken MM, Sier CF, Johnson HR, de la Jara Ortiz F, Bhairosingh SS, et al. Anti-GD2-IRDye800CW as a targeted probe for fluorescence-guided surgery in neuroblastoma. Sci Rep. 2020;10(1):1-12.
107.    Kurbegovic S, Juhl K, Sørensen KK, Leth J, Willemoe GL, Christensen A, et al. IRDye800CW labeled uPAR-targeting peptide for fluorescence-guided glioblastoma surgery: Preclinical studies in orthotopic xenografts. Theranostics. 2021;11(15):7159.
108.    Xie R, Wu Z, Zeng F, Cai H, Wang D, Gu L, et al. Retro-enantio isomer of angiopep-2 assists nanoprobes across the blood-brain barrier for targeted magnetic resonance/fluorescence imaging of glioblastoma. Signal Transduct Target Ther. 2021;6(1):1-13.
109.    Xu S, Shi X, Chu C, Liu G. A TME-activated in situ nanogenerator for magnetic resonance/fluorescence/photoacoustic imaging.  Methods Enzymol. 657: Elsevier; 2021. p. 145-156.
110.    Zhu Y-L, Shen Y-C, Liu F, Chen S, Yan G-P, Liang S-C, et al. Dual-modal fullerenol probe containing glypican-3 monoclonal antibody for electron paramagnetic resonance/fluorescence imaging. Fuller Nanotub Carbon Nanostructures. 2021;29(4):280-287.
111.    Yusnaini R, Ikhsan I, Idroes R, Munawar A, Arabia T, Saidi N, et al., editors. Near-infrared spectroscopy (NIRS) as an integrated approach for rapid classification and bioactive quality evaluation of intact Feronia limoni. IOP Conf Ser: Earth Environ Sci; 2021;667:012028.
112.    Chandrasekaran I, Panigrahi SS, Ravikanth L, Singh CB. Potential of near-infrared (NIR) spectroscopy and hyperspectral imaging for quality and safety assessment of fruits: An overview. Food Anal Methods. 2019;12(11):2438-2458.
113.    Fausto R, Ildiz GO, Nunes CM. IR-induced and tunneling reactions in cryogenic matrices: the (incomplete) story of a successful endeavor. Chem Soc Rev. 2022; 51:2853-2872.
114.    Cwalinski T, Polom W, Marano L, Roviello G, D’Angelo A, Cwalina N, et al. Methylene Blue—Current knowledge, fluorescent properties, and its future use. J Clin Med. 2020;9(11):3538.
115.    Wang L, Liang M, Xiao Y, Chen J, Mei C, Lin Y, et al. NIR-II Navigation with an EGFR-Targeted Probe Improves Imaging Resolution and Sensitivity of Detecting Micrometastases in Esophageal Squamous Cell Carcinoma Xenograft Models. Mol Pharm. 2022.
116.    Polikarpov DM, Campbell DH, McRobb LS, Wu J, Lund ME, Lu Y, et al. Near-infrared molecular imaging of glioblastoma by Miltuximab®-IRDye800CW as a potential tool for fluorescence-guided surgery. Cancers (Basel). 2020;12(4):984.
117.    Wu Y, Ang MJY, Sun M, Huang B, Liu X. Expanding the toolbox for lanthanide-doped upconversion nanocrystals. J Phys D Appl Phys. 2019;52(38):383002.
118.    Akhtar N, Wu P-W, Chen CL, Chang W-Y, Liu R-S, Wu CT, et al. Radiolabeled Human Protein-Functionalized Upconversion Nanoparticles for Multimodal Cancer Imaging. ACS Appl Nano Mater. 2022;5:7051-7062.
119.    Yamini S, Gunaseelan M, Kumar G, Singh S, Dannangoda GC, Martirosyan KS, et al. NaGdF 4: Yb, Er-Ag nanowire hybrid nanocomposite for multifunctional upconversion emission, optical imaging, MRI and CT imaging applications. Microchim Acta. 2020;187:1-10.
120.    Yamini S, Gunaseelan M, Gangadharan A, Lopez SA, Martirosyan KS, Girigoswami A, et al. Upconversion, MRI imaging and optical trapping studies of silver nanoparticle decorated multifunctional NaGdF4: Yb, Er nanocomposite. Nanotechnology. 2021;33(8):085202.
121.    Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D. Advances in highly doped upconversion nanoparticles. Nat Commun. 2018;9(1):1-12.
122.    Gee A, Xu X. Surface functionalisation of upconversion nanoparticles with different moieties for biomedical applications. Surf. 2018;1(1):96-121.
123.    Perumal V, Sivakumar PM, Zarrabi A, Muthupandian S, Vijayaraghavalu S, Sahoo K, et al. Near infra-red polymeric nanoparticle based optical imaging in Cancer diagnosis. J Photochem Photobiol B Biol. 2019;199:111630.
124.    Vimaladevi M, Divya KC, Girigoswami A. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant. J Photochem Photobiol B Biol. 2016;162:146-152.
125.    Pallavi P, Girigoswami A, Girigoswami K, Hansda S, Ghosh R. Photodynamic Therapy in Cancer. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. 2022:1-24.
126.    Sun W, Luo L, Feng Y, Qiu Y, Shi C, Meng S, et al. Gadolinium–Rose Bengal Coordination Polymer Nanodots for MR‐/Fluorescence‐Image‐Guided Radiation and Photodynamic Therapy. Adv Mater. 2020;32(23):2000377.
127.    Ito R, Kamiya M, Urano Y. Molecular probes for fluorescence image-guided cancer surgery. Curr Opin Chem Biol. 2022;67:102112.
128.    Mondal SB, Tsen SWD, Achilefu S. Head‐Mounted Devices for Noninvasive Cancer Imaging and Intraoperative Image‐Guided Surgery. Adv Funct Mater. 2020;30(37):2000185.
129.    Li D, Zhang J, Chi C, Xiao X, Wang J, Lang L, et al. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN. Theranostics. 2018;8(9):2508.