1. Syganov I, Maitz MF, Wieser E. Blood compatibility of titanium based coatings prepared by metal plasma immersion ion implantation and deposition. Appl Surf Sci. 2004; 235: 156-163.
2. Zhang F, Liu X, Mao Y, Huang N, Chen Y, Zheng Z, et al. Artificial heart valves: improved hemocompatibility by titanium oxide coatings prepared by ion beam assisted deposition. J Surf Coat Tech. 1998; 103: 146-150
3. Stoeckel D, Bonsignore C, Dud S. Minimally invasive therapy & allied technology, a survey of stent designs. 2002; 11(4): 137-147.
4. Serruys P, Strauss BH, Beatt KJ. Angiographic follow-up after placement of a self-expanding coronary-artery stent. New Engl J Med. 1991; 324: 13-17
5. Cannan CR. Curr Cardiol Rep. 2001; 3(1): 78-84.
6. Huang N, Yang P, chen X. Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. J Biomaterials. 1998; 19: 771-776.
7. Kastrati A, Shomig A, Dirchinger J. Increased risk of restenosis after placement of gold-coated stents. J Circulation. 2000; 101(21): 2478-2483.
8. Bolz A, Schaldach M. Artificial Heart Valves: Improved blood compatibility by PECVD a-SiC:H coating. J Artificial organs.1990; 14(4): 260-269.
9. Mitamura Y, Hosooka K, Matumoto T. Development of a ceramic heart valve. J Biomater Appl. 1989; 4: 33-55.
10. Dion I, Roques X, Baquey C, Baudet E, Basse Cathalinat B, More N. Hemocompatibility of diamond-Like carbon coating. Biomed Mater Eng. 1993; 3:51-55.
11. Ebert R, Schaldach M. The applicability of rutile ceramics for cardiovascular devices. Physics in Medicine and Biology. 1980; 25: 1185-1190.
12. Huang N. In vitro Investigation of Blood Compatibility of Ti with Oxide Layers of Rutile Structure. J Biomaterial Applications. 1994; 8(4): 404-412.
13. Maitz MF, Pham MT, Wieser E, Tsyganov I. Blood compatibility of titanium oxides with various crystal structure and element doping. J Biomater Appl. 2003; 17: 303-.
14. Jing-Xio Liu. Da- Zhi Yang, Fei Shi, Ying-Ji Cai. Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. J Thin Solid Films. 2003; 429: 225-230.
15. Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. J Biomaterials. 2006; 27: 4315-4325.
16. Imai Y, Nose Y. A new method for evalution of antithrombogenicity of materials. J Biomed Mater Res. 1972; 6: 165-172.
17. Grunkemeir JM, Tsai WB, Horbett TA. Hemocompatibility of treated polystyrene substrates: Contact activation, platelet adhesion, and procoagulant activity of adherent platelets. J Biomed Mater Res. 1998; 41: 657-670.
18. Sunny MC, Sharma CP. Titanium-protein interaction: changes with oxide layer thickness. J Biomaterial Applications. 1991; 5: 89-98.
19. Trepanier C, Tabrizian M, Yahia L’H. Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res. 1998; 43: 433-440.
20. cacciafesta P. Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness. J Sur Sci. 2001; 491: 405-420.
21. Shirkhanzadeh M. Nanoporous alkoxy-derived titanium oxide coating: a reactive overlayer for functionalizing titanium surface. J Mater Sci Med. 1998; 9: 355-362.