A comprehensive review of manganese dioxide nanoparticles and strategy to overcome toxicity

Document Type : Review Paper

Authors

Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu District, Chennai, Tamil Nadu, 603103, India

Abstract

Chemical and biological methods are available for synthesizing manganese dioxide nanoparticles, with the characteristic electrochemical features tunable through natural product extract. MnO2 nanoparticles reduce the prevalence of organism resistance to drugs. Manganese dioxide nanoparticles are effective against various bacteria, including Staphylococcus aureus and E. coli. Manganese dioxide nanoparticles can potentially be used in the treatment of osteoarthritis and the preservation of cartilage. They are also promising ROS scavengers and may be used to fabricate antioxidant polymer microreactors. In cancer treatment, the MnO2 nanoparticles inhibit ATP production by cancer cells. In magnetic resonance imaging, the nanoparticles improve the signal-to-noise ratio and selectivity. Based on this background information, MnO2 nanoparticles today find use in photodynamic, chemodynamic, and immune therapy and diagnostics, where the oxygen produced by MnO2 nanoparticles is said to improve the therapeutic efficiency. Hybrid nanoparticles of gold nanorods and MnO2 nanoparticles enhance the performance in hormone-, pH-, and NIR- responsiveness. Other applications include glucose oxidase activity, photothermal conversion, and enhanced antitumor immunity. On the other hand, the nanoparticles can cause spermatogenesis failure, oxidative stress, active oxygen, and sperm motility reduction. As surface functionalization can improve the overall functional properties of the nanoparticles, polymer coating on MnO2 nanoparticles brings about new and improved properties. For instance, the layer of biopolymers such as chitosan enhances the magnetic resonance images’ quality and opens up the potential for attaching drugs and targeting moieties.

Keywords


1.    Hulla JE, Sahu SC, Hayes AW. Nanotechnology: History and future. Hum Exp Toxicol. 2015;34(12):1318-1321.
2.    Tetley TD. Health effects of nanomaterials. Biochem Soc trans. 2007;35(3):527-531. 
3.    Ghosh SK. Diversity in the family of manganese oxides at the nanoscale: from fundamentals to applications. ACS omega. 2020;5(40):25493-25504.
4.    Dawadi S, Gupta A, Khatri M, Budhathoki B, Lamichhane G, Parajuli N. Manganese dioxide nanoparticles: synthesis, application and challenges. J Mater Sci Lett. 2020;43(1):277.
5.    Hamalzadeh Ahmadi F, Mousavi Ghahfarokhi SE. Fabrication of MnO2 nanostructures and study of their structural and dielectric properties. J Res Many Sys. 2021;11(4):139-149.
6.    Cherian E, Rajan A, Baskar GJIJoMS, Technology. Synthesis of manganese dioxide nanoparticles using co-precipitation method and its antimicrobial activity. Int J Mod Sci Technol. 2016;1(01):17-22.
7.    Wang Y, Zhang X, He X, Zhang W, Zhang X, Lu C. In situ synthesis of MnO2 coated cellulose nanofibers hybrid for effective removal of methylene blue. Carbohydr Polym. 2014;110:302-308. 
8.    Chen Y, Cong H, Shen Y, Yu B. Biomedical application of manganese dioxide nanomaterials. Nanotechnology. 2020;31(20):202001. Epub 2020/01/25.
9. Chen J, Meng H, Tian Y, Yang R, Du D, Li Z, et al. Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications. Nanoscale Horiz. 2019;4(2):321-338.
10.    Cho MH, Choi E-S, Kim S, Goh S-H, Choi Y. Redox-Responsive Manganese Dioxide Nanoparticles for Enhanced MR Imaging and Radiotherapy of Lung Cancer. Front Chem. 2017;5.
11.    Prasad P, Gordijo CR, Abbasi AZ, Maeda A, Ip A, Rauth AM, et al. Multifunctional albumin-MnO₂ nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS nano. 2014;8(4):3202-3212. Epub 2014/04/08. 
12.    Tang Q, Cheng Z, Yang N, Li Q, Wang P, Chen D, et al. Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy. Biomaterials. 2019;205:1-10. 
13.    Kumar S, Adjei IM, Brown SB, Liseth O, Sharma B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials. 2019;224:119467. 
14.    Wang P, Liang C, Zhu J, Yang N, Jiao A, Wang W, et al. Manganese-Based Nanoplatform As Metal Ion-Enhanced ROS Generator for Combined Chemodynamic/Photodynamic Therapy. ACS Appl Mater Interfaces. 2019;11(44):41140-41147. 
15.    Tao H, Wu T, Aldeghi M, Wu TC, Aspuru-Guzik A, Kumacheva E. Nanoparticle synthesis assisted by machine learning. Nat Rev Mater. 2021;6(8):701-716.
16.    Rane AV, Kanny K, Abitha VK, Thomas S. Chapter 5 - Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In: Mohan Bhagyaraj S, Oluwafemi OS, Kalarikkal N, Thomas S, editors. Synthesis of Inorganic Nanomaterials: Woodhead Publishing; 2018. p. 121-139.
17.    Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nature reviews Drug discovery. 2021;20(2):101-124. 
18.    Li Y, Yu N, Yan P, Li Y, Zhou X, Chen S, et al. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. J Power Sources. 2015;300:309-317.
19.    Ding Y-S, Shen X-F, Gomez S, Luo H, Aindow M, Suib SL. Hydrothermal Growth of Manganese Dioxide into Three-Dimensional Hierarchical Nanoarchitectures. Adv Funct Mater. 2006;16(4):549-555.
20.    Chen H, Hu L, Yan Y, Che R, Chen M, Wu L. One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance. Adv Energy Mater. 2013;3(12):1636-1646.
21.    Jacob GM, Zhitomirsky I. Microstructure and properties of manganese dioxide films prepared by electrodeposition. Applied Surface Science. 2008;254(20):6671-6676.
22.    L Kadam S, M Padwal P, M Mane S, B Kulkarni S. Electrochemical synthesis and investigation of nano MnO2 electrode material for supercapacitor application. Adv Mater Proc. 2021;1(2):205-209.
23.    Li G-R, Xu H, Lu X-F, Feng J-X, Tong Y-X, Su C-Y. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale. 2013;5(10):4056-4069. 
24.    Mahmudi M, Widiyastuti W, Nurlilasari P, Affandi S, Setyawan H. Manganese dioxide nanoparticles synthesized by electrochemical method and its catalytic activity towards oxygen reduction reaction. J  Ceram Soc Jpn. 2018;126(11):906-913.
25.    Byun S, Shim Y, Min Yuk J, Lee C-W, Yoo J. Reduced graphene oxide as a charge reservoir of manganese oxide: Interfacial interaction promotes charge storage property of MnOx-based micro-supercapacitors. Chem Eng J. 2022;439:135569. 
26.    Wu M-S, Chiang P-CJ. Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries. Electrochem commun. 2006;8(3):383-388.
27.    Tizfahm J, Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P, Faridbod F. Electrochemical preparation and evaluation of the supercapacitive performance of MnO2 nanoworms.     Mater Lett. 2016;167:153-156. 
28.    Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci. 2011;169(2):59-79. 
29.    Das RK, Brar SK. Plant mediated green synthesis: modified approaches. Nanoscale. 2013;5(21):10155-10162.
30.    Joshi NC, Joshi E, Singh A. Biological Synthesis, Characterisations and Antimicrobial activities of manganese dioxide (MnO2) nanoparticles. Res J Pharm Technol. 2020;13(1):135-140.
31.    Hano C, Abbasi BH. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomolecules. 2021;12(1). Epub 2022/01/22. 
32.    Souri M, Hoseinpour V, Ghaemi N, Shakeri A. Procedure optimization for green synthesis of manganese dioxide nanoparticles by Yucca gloriosa leaf extract. Int Nano Lett. 2019;9(1):73-81. 
33.    Krishnaraj C, Ji BJ, Harper SL, Yun SI. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens. Bioprocess Biosyst Eng. 2016;39(5):759-772. 
34.    Terefe A, Balakrishnan S. Manganese dioxide nanoparticles green synthesis using lemon and curcumin extracts and evaluation of photocatalytic activity. Mater Today: Proc. 2022;62:434-441. 
35.    Ogunyemi SO, Zhang F, Abdallah Y, Zhang M, Wang Y, Sun G, et al. Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. Artif Cells Nanomed Biotechnol. 2019;47(1):2230-2239. 
36.    Joshi NC, Joshi E, Singh A. Biological Synthesis, Characterisations and Antimicrobial activities of manganese dioxide (MnO2) nanoparticles. Research J Pharm and Tech. 2020;13(1):135-140.
37.    Arsene MMJ, Jorelle AB, Sarra S, Viktorovna PI, Davares AK, Ingrid NK, et al. Short review on the potential alternatives to antibiotics in the era of antibiotic resistance. J Appl Pharm Sci. 2021;12(1):029-040.
38.    Ashik UPM, Kudo S, Hayashi J-i. Chapter 2 - An Overview of Metal Oxide Nanostructures. In: Mohan Bhagyaraj S, Oluwafemi OS, Kalarikkal N, Thomas S, editors. Synthesis of Inorganic Nanomaterials: Woodhead Publishing; 2018. p. 19-57.
39.    Kanha P, Saengkwamsawang P. Effect of stirring time on morphology and crystalline features of MnO2 nanoparticles synthesized by co-precipitation method. Inorg Nano-Met Chem. 2017;47(8):1129-1133.
40.    Athar T. Chapter 17 - Smart precursors for smart nanoparticles. In: Ahmed W, Jackson MJ, editors. Emerging Nanotechnologies for Manufacturing (Second Edition). Boston: William Andrew Publishing; 2015. p. 444-538.
41.    Goshisht MK, Tripathi N. Fluorescence-based sensors as an emerging tool for anion detection: mechanism, sensory materials and applications. J Mater Chem C. 2021;9(31):9820-9850.
42.    Amighian J, Mozaffari M, Nasr B. Preparation of nano-sized manganese ferrite (MnFe2O4) via coprecipitation method. Phys Status Solidi Rapid Res Lett. 2006;3(9):3188-3192.
43.    Wang X, Li YJCAEJ. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem Eur J. 2003;9(1):300-306.
44.    Bach S, Henry M, Baffier N, Livage J. Sol-gel synthesis of manganese oxides. J Solid State Chem. 1990;88(2):325-333.
45.    Gong K, Yu P, Su L, Xiong S, Mao L. Polymer-Assisted Synthesis of Manganese Dioxide/Carbon Nanotube Nanocomposite with Excellent Electrocatalytic Activity toward Reduction of Oxygen. J Phys Chem C. 2007;111(5):1882-1887. 
46.    Qian Y, Lu S, Gao F. Synthesis of manganese dioxide/reduced graphene oxide composites with excellent electrocatalytic activity toward reduction of oxygen. Mater Lett. 2011;65(1):56-58.
47.    Li K, Li H, Xiao T, Long J, Zhang G, Li Y, et al. Synthesis of manganese dioxide with different morphologies for thallium removal from wastewater. J Environ Manag. 2019;251:109563.
48.    Manjula R, Thenmozhi M, Thilagavathi S, Srinivasan R, Kathirvel A. Green synthesis and characterization of manganese oxide nanoparticles from Gardenia resinifera leaves. Mater Today: Proc. 2020;26:3559-3563. 
49.    Kumar V, Singh K, Panwar S, Mehta SK. Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol. Int Nano Lett. 2017;7(2):123-131. 
50.    Balan L, Matei Ghimbeu C, Vidal L, Vix-Guterl C. Photoassisted synthesis of manganese oxide nanostructures using visible light at room temperature. Green Chem. 2013;15(8):2191-2199. 
51.    Haque S, Tripathy S, Patra CR. Manganese-based advanced nanoparticles for biomedical applications: future opportunity and challenges. Nanoscale. 2021;13(39):16405-16426. 
52.    Marston HD, Dixon DM, Knisely JM, Palmore TN, Fauci AS. Antimicrobial Resistance. JAMA. 2016;316(11):1193-1204. 
53.    Tenover FC. Mechanisms of Antimicrobial Resistance in Bacteria. Am J Med. 2006;119(6, Supplement 1):S3-S10.
54.    Dey N, Kamatchi C, Vickram AS, Anbarasu K, Thanigaivel S, Palanivelu J, et al. Role of nanomaterials in deactivating multiple drug resistance efflux pumps – A review. Environ Res. 2022;204:111968.
55.    Kunkalekar RK, Naik MM, Dubey SK, Salker AV. Antibacterial activity of silver-doped manganese dioxide nanoparticles on multidrug-resistant bacteria. J Chem Technol Biotechnol. 2013;88(5):873-877.
56.    Haneefa M, Jayandran M, Balasubramanian V. Evaluation of antimicrobial activity of green-synthesized manganese oxide nanoparticles and comparative studies with curcuminaniline functionalized nanoform. Asian J Pharm Clin Res. 2017;10:347-352.
57.    Rahmat M, Bhatti HN, Rehman A, Chaudhry H, Yameen M, Iqbal M, et al. Bionanocomposite of Au decorated MnO2 via in situ green synthesis route and antimicrobial activity evaluation. Arab J Chem. 2021;14(12):103415.
58.    Bonet-Aleta J, Calzada-Funes J, Hueso JL. Manganese oxide nano-platforms in cancer therapy: Recent advances on the development of synergistic strategies targeting the tumor microenvironment. Appl Mater Today. 2022;29:101628.
59.    Yang G, Ji J, Liu Z. Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(6):e1720.
60.    Li Y, Wu J, Zhang C, Chen Y, Wang Y, Xie M. Manganese dioxide nanoparticle-based colorimetric immunoassay for the detection of alpha-fetoprotein. Mikrochim Acta. 2017;184(8):2767-2774.
61.    Hao Y, Wang L, Zhang B, Zhao H, Niu M, Hu Y, et al. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application. Nanotechnology. 2016;27(2):025101. 
62.    Peng J, Yang Q, Li W, Tan L, Xiao Y, Chen L, et al. Erythrocyte-Membrane-Coated Prussian Blue/Manganese Dioxide Nanoparticles as H2O2-Responsive Oxygen Generators To Enhance Cancer Chemotherapy/Photothermal Therapy. ACS Appl Mater Interfaces. 2017;9(51):44410-44422.
63.    Zhang Z, Ji Y. Mesoporous Manganese Dioxide Coated Gold Nanorods as a Multiresponsive Nanoplatform for Drug Delivery. Ind Eng Chem Res. 2019;58(8):2991-2999.
64.    Chen Z, Zhang Q, Huang Q, Liu Z, Zeng L, Zhang L, et al. Photothermal MnO2 nanoparticles boost chemo-photothermal therapy-induced immunogenic cell death in tumor immunotherapy. Int J Pharm. 2022;617:121578.
65.    Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese Oxide Nanoparticles As MRI Contrast Agents In Tumor Multimodal Imaging And Therapy. Int J Nanomedicine. 2019;14:8321-8344. 
66.    Wang H, Bremner DH, Wu K, Gong X, Fan Q, Xie X, et al. Platelet membrane biomimetic bufalin-loaded hollow MnO2 nanoparticles for MRI-guided chemo-chemodynamic combined therapy of cancer. Chem Eng J. 2020;382:122848. 
67.    Malheiros JM, Paiva FF, Longo BM, Hamani C, Covolan L. Manganese-Enhanced MRI: Biological Applications in Neuroscience. Front Neurol. 2015;6.
68.    Gu D, An P, He X, Wu H, Gao Z, Li Y, et al. A novel versatile yolk-shell nanosystem based on NIR-elevated drug release and GSH depletion-enhanced Fenton-like reaction for synergistic cancer therapy. Colloids Surf B. 2020;189:110810. 
69.    Raja J, Wang M. Manganese oxide nanocomposites with improved surface area prepared by one-pot surfactant route for electro catalytic and biosensor applications. J Porous Mater. 2010;17:677-683. 
70.    Hofmann-Amtenbrink M, Grainger DW, Hofmann H. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine. 2015;11(7):1689-1694. 
71.    Ahmet A, Hande S, Mohammad C. Nanoparticles Toxicity and Their Routes of Exposures. In: Ali Demir S, editor. Recent Advances in Novel Drug Carrier Systems. Rijeka: IntechOpen; 2012. p. Ch. 18.
72.    Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL. Toxicity of Engineered Nanoparticles in the Environment. Anal Chem Res. 2013;85(6):3036-3049. 
73.    Warheit DB. Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years? F1000Research. 2018;7:376. 
74.    Maynard AD. Chapter 1 - Challenges in Nanoparticle Risk Assessment. In: Ramachandran G, editor. Assessing Nanoparticle Risks to Human Health. Oxford: William Andrew Publishing; 2011. p. 1-19.
75.    Bessa MJ, Brandão F, Viana M, Gomes JF, Monfort E, Cassee FR, et al. Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. Environ Res. 2020;184:109297. Epub 2020/03/11. 
76.    Yousefalizadegan N, Mousavi Z, Rastegar T, Razavi Y, Najafizadeh P. Reproductive toxicity of manganese dioxide in forms of micro- and nanoparticles in male rats. Int J Reprod Biomed. 2019;17(5):361-370. 
77.    Negahdary M, Arefian Z, Dastjerdi HA, Ajdary M. Toxic effects of Mn2O3 nanoparticles on rat testis and sex hormone. J Nat Sci Biol Med. 2015;6(2):335-339. 
78.    Cen C, Wang F, Xiong K, Jiang L, Hou X. Protective effects of Coridius chinensis extracts on rat reproductive damage induced by manganese. Andrologia. 2022;54(2):e14326. 
79.    Qi Z, Liu Y, Yang H, Yang X, Wang H, Liu B, et al. Protective role of m6A binding protein YTHDC2 on CCNB2 in manganese-induced spermatogenesis dysfunction. Chem Biol Interact. 2022;351:109754. 
80.    Kim SI, Jang YS, Han SH, Choi MJ, Go EH, Cheon YP, et al. Effect of manganese exposure on the reproductive organs in immature female rats. Dev Reprod. 2012;16(4):295-300. 
81.    Singh SP, Kumari M, Kumari SI, Rahman MF, Mahboob M, Grover P. Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J Appl Toxicol. 2013;33(10):1165-1179. 
82.    Alarifi S, Ali D, Alkahtani S. Oxidative Stress-Induced DNA Damage by Manganese Dioxide Nanoparticles in Human Neuronal Cells. Biomed Res Int. 2017;2017:5478790.
83.    Sobańska Z, Roszak J, Kowalczyk K, Stępnik M. Applications and biological activity of nanoparticles of manganese and manganese oxides in in vitro and in vivo models. Nanomaterials (Basel, Switzerland). 2021;11(5). 
84.    Mehdizadeh P, Fesharaki SSH, Nouri M, Ale-Ebrahim M, Akhtari K, Shahpasand K, et al. Tau folding and cytotoxicity of neuroblastoma cells in the presence of manganese oxide nanoparticles: Biophysical, molecular dynamics, cellular, and molecular studies. Int J Biol Macromol. 2019;125:674-682. 
85.    Browning CL, Green A, Gray EP, Hurt R, Kane AB. Manganese dioxide nanosheets induce mitochondrial toxicity in fish gill epithelial cells. Nanotoxicology. 2021;15(3):400-417. 
86. Win-Shwe TT, Fujimaki H. Nanoparticles and neurotoxicity. Int J Mol Sci. 2011;12(9):6267-6280. 
87. Pardhiya S, Gaharwar US, Gautam R, Priyadarshini E, Nirala JP, Rajamani P. Cumulative effects of manganese nanoparticle and radiofrequency radiation in male Wistar rats. Drug Chem Toxicol. 2022;45(3):1395-1407. 
88. Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci. 2020;7:587012. 
89. Mout R, Moyano DF, Rana S, Rotello VM. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev. 2012;41(7):2539-2544. 
90. Su Y, Luo C, Zhang Z, Hermawan H, Zhu D, Huang J, et al. Bioinspired surface functionalization of metallic biomaterials. J Mech Behav Biomed Mater. 2018;77:90-105. 
91. Cé R, Lavayen V, Couto GK, De Marchi JGB, Pacheco BZ, Natividade LA, et al. Folic Acid-Doxorubicin-Double-Functionalized-Lipid-Core Nanocapsules: Synthesis, Chemical Structure Elucidation, and Cytotoxicity Evaluation on Ovarian (OVCAR-3) and Bladder (T24) Cancer Cell Lines. Pharm res. 2021;38(2):301-317. 
92. Chan Y-H, Wu P-J. Semiconducting Polymer Nanoparticles as Fluorescent Probes for Biological Imaging and Sensing. Part Part Syst Charact. 2015;32(1):11-28. 
93. Wang Y, Song Y, Zhu G, Zhang D, Liu X. Highly biocompatible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy. Chin Chem Lett. 2018;29(11):1685-1688. 
94. Moku G, Gopalsamuthiram VR, Hoye TR, Panyam JJSmopM. Surface modification of nanoparticles: methods and applications. In Surface Modification of Polymers 2019:317-346.
95. Nemani SK, Annavarapu RK, Mohammadian B, Raiyan A, Heil J, Haque MA, et al. Surface Modification: Surface Modification of Polymers: Methods and Applications (Adv. Mater. Interfaces 24/2018). Adv Mater Interfaces. 2018;5(24):1870121.
96. Francis LF, Roberts CC. Dispersion and Solution processes. Materials Processing: A Unified Approach to Processing of Metals, Ceramics. 2016:1-597. 
97. Moreno-Vega A-I, Gómez-Quintero T, Nuñez-Anita R-E, Acosta-Torres L-S, Castaño V. Polymeric and Ceramic Nanoparticles in Biomedical Applications. J Nanotechnol. 2012;2012:936041.
98. Farzamfar S, Aleahmad M, Kouzehkonan GS, Salehi M, Nazeri N. Polycaprolactone/Gelatin Nanofibrous Scaffolds for Tissue Engineering. Biointerface Res Appl Chem. 2020;11(4):11104-11115.
99. Ibrahim I, Sadiku R, Jamiru T, Hamam A, Kupolati W. Applications of Polymers in the Biomedical Field. Curr Trends Biomed Eng Biosci. 2017;4.
100. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J nanobiotechnology. 2011;9:55. 
101. Rakhtshah J, Yaghoobi F. Catalytic application of new manganese Schiff-base complex immobilized on chitosan-coated magnetic nanoparticles for one-pot synthesis of 3-iminoaryl-imidazo[1,2-a]pyridines. Int J Biol Macromol. 2019;139:904-916. 
102. Zhen Z, Xie J. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. Theranostics. 2012;2(1):45-54. 
103. Kim DH, Nikles DE, Brazel CS. Synthesis and Characterization of Multifunctional Chitosan- MnFe₂O(4) Nanoparticles for Magnetic Hyperthermia and Drug Delivery. Materials (Basel, Switzerland). 2010;3(7):4051-4065. 
104. Girigoswami K, Viswanathan M, Murugesan R, Girigoswami A. Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity. Mater Sci Eng C. 2015;56:501-510.