A review study of the use of modified chitosan as a new approach to increase the preservation of blood products (erythrocytes, platelets, and plasma products): 2010-2022

Document Type : Review Paper


1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran

2 Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

4 Cancer & Nutrition Researcher, Department of Nutrition, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran


Due to the unique properties of chitosan (antibacterial and stimulating tissue repair factors) in improving cell function, modified chitosan derivatives are widely used to improve the function of blood products. However, interaction of chitosan positive surface charge with negatively charged blood cells and anionic proteins, increases hemolysis, platelet activation, and dysfunction of plasma proteins, so the use of chitosan in blood applications requires surface modifications. Therefore, in this review study, we review the literature (2010–2022) to determine whether the charged-modified chitosan could eliminate the effects of chitosan on blood products and prepare a platform for more research to improve the preservation of the blood products such as erythrocytes, platelets and plasma proteins (albumin, immunoglobulin (Ig) and factor (FVIII)). Overall, the results of this review study show that negative surface-charged chitosan can increase hematopoiesis and increase the preservation of erythrocytes, platelet, and plasma products. Modified chitosan can be used as an anticoagulant compound for purification and filtration of plasma proteins, gene transfer of FVIII, and to increase the stability of plasma proteins. In addition, due to its antibacterial and hemostatic properties, negatively charged chitosan can stimulate coagulation factors and rapid wound healing and can be used in the production of wound dressings. This review study provides researchers with a new insight into the effectiveness of negative-charged chitosan in improving the preservation of blood products including erythrocytes, platelets, and plasma products (albumin, immunoglobulin, and FVIII) and promises to increase the efficacy of negative-charged chitosan in the future research. 


1.    Sagnella S, Mai-Ngam K. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Colloids Surf B Biointerfaces. 2005;42(2):147-155.
2.    Elieh-Ali-Komi D, Hamblin MR. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res. 2016;4(3):411.
3.    Koev S, Dykstra P, Luo X, Rubloff G, Bentley W, Payne G, et al. Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab Chip. 2010;10(22):3026-2042.
4.    Fortunati E, Luzi F, Yang W, Kenny JM, Torre L, Puglia D. Bio-based nanocomposites in food packaging. Nanomater Food Packag. 2018:71-110.
5.    Hu Z, Zhang D-Y, Lu S-T, Li P-W, Li S-D. Chitosan-based composite materials for prospective hemostatic applications. Mar Drugs. 2018;16(8):273.
6.    Bellich B, D’Agostino I, Semeraro S, Gamini A, Cesàro A. “The good, the bad and the ugly” of chitosans. Mar Drugs. 2016;14(5):99.
7.    Wang Y-W, Liu C-C, Cherng J-H, Lin C-S, Chang S-J, Hong Z-J, et al. Biological effects of chitosan-based dressing on hemostasis mechanism. Polymers. 2019;11(11):1906.
8.    Wang K, Pan S, Qi Z, Xia P, Xu H, Kong W, et al. Recent advances in chitosan-based metal nanocomposites for wound healing applications. Adv Mater Sci Eng. 2020;2020.
9.    Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8(14):7533-7549.
10.    Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P. Chitin and chitosans: Characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs. 2019;17(6):369.
11.    Franco R, Gianfreda F, Miranda M, Barlattani A, Bollero P. The hemostatic properties of chitosan in oral surgery. Biomed Biotechnol Res J (BBRJ). 2020;4(3):186.
12.    Chen K, Lin T, Yang C, Kuo Y, Lei U. Mechanics for the adhesion and aggregation of red blood cells on chitosan. J Mech. 2018;34(5):725-732.
13.    Zadeh Mehrizi T, Shafiee Ardestani M, Haji molla hoseini M, Khamesipour A, Mosaffa N, Ramezani A. Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine. 2018;13(24):3129-3147.
14.    Zadeh Mehrizi T, Eshghi P. Investigation of the effect of nanoparticles on platelet storage duration 2010–2020. Int Nano Lett. 2021:1-31.
15.    Chambers P, McCarthy HO, Dunne NJ. Emerging areas of bone repair materials: nucleic acid therapy and drug delivery.  Bone Repair Biomaterials: Elsevier; 2019. p. 411-446.
16.    Barroso T, Roque AC, Aguiar-Ricardo A. Bioinspired and sustainable chitosan-based monoliths for antibody capture and release. RSC Adv. 2012;2(30):11285-11294.
17.    Zadeh Mehrizi T, Rezayat SM, Shafiee Ardestani M, Ebrahimi Shahmabadi H, Ramezani A. A Review Study about the Effect of Chitosan Nanocarrier on Improving the Efficacy of Amphotericin B in the Treatment of Leishmania from 2010 to 2020. Curr Drug Deliv. 2021.
18.    Zadeh Mehrizi T, Pirali Hamedani M, Ebrahimi Shahmabadi H, Mirzaei M, Shafiee Ardestani M, Haji Molla Hoseini M, et al. Effective materials of medicinal plants for leishmania treatment in vivo environment. J Med Plants. 2020;19(74):39-62.
19.    Zadeh Mehrizi T, Khamesipour A, Shafiee Ardestani M, Shahmabadi HE, Hoseini MHM, Mosaffa N, et al. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: Real-time PCR assay plus. Int J Nanomedicine. 2019;14:7593.
20.    Zadeh Mehrizi T, Shafiee Ardestani M, Haji molla hoseini M, Khamesipour A, Mosaffa N, Ramezani A. Novel nanosized chitosan-betulinic acid against resistant Leishmania major and first clinical observation of such parasite in kidney. Sci Rep. 2018;8(1):1-19.
21.    Malik A, Rehman FU, Shah KU, Naz SS, Qaisar S. Hemostatic strategies for uncontrolled bleeding: A comprehensive update. J Biomed Mater Res B Appl Biomater. 2021.
22.    Zadeh Mehrizi T, Mosaffa N, Shafiee Ardestani M, Khamesipour A, Ebrahimi Shahmabadi H, Pirali Hamedani M, et al. In vivo therapeutic effects of four synthesized antileishmanial nanodrugs in the treatment of Leishmaniasis. Arch Clin Infect Dis. 2018;13(5).
23.    Zadeh Mehrizi T. Hemocompatibility and Hemolytic Effects of Functionalized Nanoparticles on Red Blood Cells: A Recent Review Study. Nano. 2021;16(08):2130007.
24.    Guo X, Sun T, Zhong R, Ma L, You C, Tian M, et al. Effects of chitosan oligosaccharides on human blood components. Front Pharmacol. 2018;9:1412.
25.    Zadeh Mehrizi T, Mousavi Hosseini K. An overview on the investigation of nanomaterials’ effect on plasma components: immunoglobulins and coagulation factor VIII, 2010–2020 review. Nanoscale Adv. 2021;3(13):3730-3745.
26.    Dashti Rahmat Abadi F, Ebrahimi Shahmabadi H, Abedi A, Alavi SE, Movahedi F, Koohi Moftakhari Esfahani M, et al. Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: Last status. Indian J Clin Biochem. 2014;29(3):333-338.
27.    Zadeh Mehrizi T, Shafiee Ardestani M, Khamesipour A, Haji molla hoseini M, Mosaffa N, Anissian A, et al. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. J Mater Sci Mater Med. 2018;29(8):1-14.
28.    Shahabi J, Ebrahimi Shahmabadi H, Alavi SE, Movahedi F, Koohi Moftakhari Esfahani M, Zadeh Mehrizi T, et al. Effect of gold nanoparticles on properties of nanoliposomal hydroxyurea: an in vitro study. Indian J Clin Biochem. 2014;29(3):315-20.
29.    Zadeh Mehrizi T. Adjuvanticity effects of selenium chelate nanocomplexes on the immunogenicity of hepatitis B vaccine: Thesis; 2013.
30.    Zadeh Mehrizi T, Mosaffa N, Khamesipour A, Haji Molla Hoseini M, Ebrahimi Shahmabadi H, Shafiee Ardestani M, et al. A Novel Nanoformulation for Reducing the Toxicity and Increasing the Efficacy of Betulinic Acid Using Anionic Linear Globular Dendrimer. J Nanostruct. 2021;11(1): 143-152.
31.    Zadeh Mehrizi T, Amini Kafiabad S. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: a review. J Pharm Pharmacol. 2022;74(2):179-190.
32.    Blajchman M, Shepherd F, Perrault R. Clinical use of blood, blood components and blood products. Can Med Assoc J. 1979;121(1):33.
33.    Basu D, Kulkarni R. Overview of blood components and their preparation. Indian J Anaesth. 2014;58(5):529.
34.    Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv. 2010;7(4):403-427.
35.    Xu P, Wang R, Wang X, Ouyang J. Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Onco Targets Ther. 2016;9:2873.
36.    García-Roa M, del Carmen Vicente-Ayuso M, Bobes AM, Pedraza AC, González-Fernández A, Martín MP, et al. Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfus. 2017;15(3):222.
37.    Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood. 2008;112(10):3939-3948.
38.    Sprague RS, Stephenson AH, Ellsworth ML. Red not dead: signaling in and from erythrocytes. Trends Endocrinol Metab. 2007;18(9):350-355.
39.    Harrison P. Platelet function analysis. Blood Rev. 2005;19(2):111-123.
40.    Smyth S, McEver R, Weyrich A, Morrell C, Hoffman M, Arepally G, et al. Platelet functions beyond hemostasis. J Thromb Haemost. 2009;7(11):1759-1766.
41.    Broos K, De Meyer SF, Feys HB, Vanhoorelbeke K, Deckmyn H. Blood platelet biochemistry. Thromb Res. 2012;129(3):245-249.
42.    Zadeh Mehrizi T. An Overview of the Latest Applications of Platelet-Derived Microparticles and Nanoparticles in Medical Technology 2010-2020. Curr Mol Med. 2021.
43.    Lu Y, Hu Q, Jiang C, Gu Z. Platelet for drug delivery. Curr Opin Biotechnol. 2019;58:81-91.
44.    Zadeh Mehrizi T, Kafiabad SA, Eshghi P. Effects and treatment applications of polymeric nanoparticles on improving plateletsÊ storage time: a review of the literature from 2010 to 2020. Blood Res. 56(4):215-428.
45.    Gumus A, Mandal S, Erickson D. Particle Manipulation and Biosensor Applications using Optofluidic Ring Resonators. 6th Nanoscience and Nanotechnology Conference, zmir, 2010. 
46.    Jahanban-Esfahlan A, Ostadrahimi A, Jahanban-Esfahlan R, Roufegarinejad L, Tabibiazar M, Amarowicz R. Recent developments in the detection of bovine serum albumin. Int J Biol Macromol. 2019;138:602-617.
47.    Yang R-J, Tseng C-C, Ju W-J, Wang H-L, Fu L-M. A rapid paper-based detection system for determination of human serum albumin concentration. Chem Eng J. 2018;352:241-246.
48.    Massai L, Pratesi A, Gailer J, Marzo T, Messori L. The cisplatin/serum albumin system: A reappraisal. Inorganica Chim Acta. 2019;495:118983.
49.    Zadeh Mehrizi T. Impact of metallic, quantum dots and carbon-based nanoparticles on quality and storage of albumin products for clinical use. Nano. 2021:2130013.
50.    Nezlin R. CHAPTER 1 - General Characteristics of Immunoglobulin Molecules. In: Nezlin R, editor. The Immunoglobulins. New York: Academic Press; 1998. p. 3-73.
51.    Wahed A, Dasgupta A. Chapter 16 - Thrombophilias and Their Detection. In: Wahed A, Dasgupta A, editors. Hematology and Coagulation. San Diego: Elsevier; 2015. p. 263-275.
52.    Belousov A. Nanotechnology and Discovery of a new factor which influences on permeability of erythrocytes and eryptosis. J Mater Sci Eng A. 2014;4(11):367-372.
53.    Aurich K, Fregin B, Palankar R, Wesche J, Hartwich O, Biedenweg D, et al. Label-free on chip quality assessment of cellular blood products using real-time deformability cytometry. Lab Chip. 2020;20(13):2306-2316.
54.    Zadeh Mehrizi T, Kafiabad SA, Eshghi P. Effects and treatment applications of polymeric nanoparticles on improving platelets’ storage time: a review of the literature from 2010 to 2020. Blood Res. 2021;56(4):215-228.
55.    Shelma R, Sharma CP. Development of lauroyl sulfated chitosan for enhancing hemocompatibility of chitosan. Colloids Surf B Biointerfaces. 2011;84(2):561-570.
56.    Zhou X, Zhang X, Zhou J, Li L. An investigation of chitosan and its derivatives on red blood cell agglutination. RSC Adv. 2017;7(20):12247-12254.
57.    Sarkar K, Chatterjee A, Chakraborti G, Kundu PP. Blood compatible N-maleyl chitosan-graft-PAMAM copolymer for enhanced gene transfection. Carbohydr Polym. 2013;98(1):596-606.
58.    Lima JMd, Sarmento RR, Souza JRd, Brayner FA, Feitosa APS, Padilha R, et al. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. Biomed Res Int. 2015;2015:247965.
59.    Gu R, Sun W, Zhou H, Wu Z, Meng Z, Zhu X, et al. The performance of a fly-larva shell-derived chitosan sponge as an absorbable surgical hemostatic agent. Biomaterials. 2010;31(6):1270-1277.
60.    Dai C, Liu C, Wei J, Hong H, Zhao Q. Molecular imprinted macroporous chitosan coated mesoporous silica xerogels for hemorrhage control. Biomaterials. 2010;31(30):7620-7630.
61.    Pourshahrestani S, Zeimaran E, Kadri NA, Gargiulo N, Samuel S, Naveen SV, et al. Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. J Mater Chem B. 2016;4(1):71-86.
62.    He Q, Gong K, Ao Q, Ma T, Yan Y, Gong Y, et al. Positive charge of chitosan retards blood coagulation on chitosan films. J Biomater Appl. 2013;27(8):1032-1045.
63.    Pogorielov M, Kalinkevich O, Deineka V, Garbuzova V, Solodovnik A, Kalinkevich A, et al. Haemostatic chitosan coated gauze: in vitro interaction with human blood and in-vivo effectiveness. Biomater Res. 2015;19(1):1-10.
64.    Wu S, Huang Z, Yue J, Liu D, Wang T, Ezanno P, et al. The efficient hemostatic effect of Antarctic krill chitosan is related to its hydration property. Carbohydr Polym. 2015;132:295-303.
65.    Chan LW, Kim CH, Wang X, Pun SH, White NJ, Kim TH. PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage. Acta Biomater. 2016;31:178-185.
66.    Huang Y, Zhang Y, Feng L, He L, Guo R, Xue W. Synthesis of N-alkylated chitosan and its interactions with blood. Artif Cells Nanomed Biotechnol. 2018;46(3):544-550.
67.    Redwan H, Harfoush M, Al Brad B, Fakher MAA. Evaluating Chitosan Effectiveness as Hemostatic Agent on Patients on Antiplatelet Therapy. Int J Dentistry Oral Sci. 2020;7(10):832-839.
68.    Sarkar S, Prashanth N, Shobha E, Rangan V, Nikhila G. Efficacy of platelet rich fibrin versus chitosan as a hemostatic agent following dental extraction in patients on antiplatelet therapy. J Oral Biol Craniofac Res. 2019;9(4):336-339.
69.    Rajendra K, Vempalli S, Kadiyala M, Sharma V, Karipineni S, Gunturu S, et al. Effect of platelet-rich fibrin versus chitosan-based Axiostat hemostatic agent following dental extraction in cardiac patients on antiplatelet therapy: A comparative study. Natl J Maxillofac Surg. 2021;12(3):361.
70.    Thao NT, Wijerathna H, Kumar RS, Choi D, Dananjaya S, Attanayake A. Preparation and characterization of succinyl chitosan and succinyl chitosan nanoparticle film: In vitro and in vivo evaluation of wound healing activity. Int J Biol Macromol. 2021;193:1823-1834.
71.    Xiong W-y, Yi Y, Liu H-z, Wang H, Liu J-h, Ying G-q. Selective carboxypropionylation of chitosan: synthesis, characterization, blood compatibility, and degradation. Carbohydr Res. 2011;346(10):1217-1223.
72.    Nadesh R, Narayanan D, Pr S, Vadakumpully S, Mony U, Koyakkutty M, et al. Hematotoxicological analysis of surface‐modified and‐unmodified chitosan nanoparticles. J Biomed Mater Res A. 2013;101(10):2957-2966.
73.    Bender EA, Adorne MD, Colomé LM, Abdalla DS, Guterres SS, Pohlmann AR. Hemocompatibility of poly (ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm. 2012;426(1-2):271-279.
74.    Benghanem S, Chetouani A, Elkolli M, Bounekhel M, Benachour D. Grafting of oxidized carboxymethyl cellulose with hydrogen peroxide in presence of Cu (II) to chitosan and biological elucidation. Biocybern Biomed Eng. 2017;37(1):94-102.
75.    Yan S, Tu M-M, Qiu Y-R. The hemocompatibility of the modified polysulfone membrane with 4-(chloromethyl) benzoic acid and sulfonated hydroxypropyl chitosan. Colloids Surf B Biointerfaces. 2020;188:110769.
76.    Li Y, Li J, Shi Z, Wang Y, Song X, Wang L, et al. Anticoagulant chitosan-kappa-carrageenan composite hydrogel sorbent for simultaneous endotoxin and bacteria cleansing in septic blood. Carbohydr Polym. 2020;243:116470.
77.    Sen S, Konar S, Das B, Pathak A, Dhara S, Dasgupta S, et al. Inhibition of fibrillation of human serum albumin through interaction with chitosan-based biocompatible silver nanoparticles. RSC Adv. 2016;6(49):43104-43115.
78.    Chou T-C, Fu E, Wu C-J, Yeh J-H. Chitosan enhances platelet adhesion and aggregation. Biochem Biophys Res Commun. 2003;302(3):480-483.
79.    Sonin D, Pochkaeva E, Zhuravskii S, Postnov V, Korolev D, Vasina L, et al. Biological safety and biodistribution of chitosan nanoparticles. Nanomaterials. 2020;10(4):810.
80.    Lord MS, Cheng B, McCarthy SJ, Jung M, Whitelock JM. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials. 2011;32(28):6655-6662.
81.    Periayah MH, Halim AS, Hussein AR, Saad AZM, Rashid AHA, Noorsal K. In vitro capacity of different grades of chitosan derivatives to induce platelet adhesion and aggregation. Int J Biol Macromol. 2013;52:244-249.
82.    Chung T-W, Lin P-Y, Wang S-S, Chen Y-F. Adenosine diphosphate-decorated chitosan nanoparticles shorten blood clotting times, influencing the structures and varying the mechanical properties of the clots. Int J Nanomedicine. 2014;9:1655.
83.    Periayah MH, Halim AS, Saad AZM, Yaacob NS, Hussein AR, Karim FA, et al. Effect of the novel biodegradable N, O-carboxymethylchitosan and oligo-chitosan on the platelet thrombogenicity cascade in von Willebrand disease. Thromb Res. 2015;136(3):625-633.
84.    Shi X, Fang Q, Ding M, Wu J, Ye F, Lv Z, et al. Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study. J Biomater Appl. 2016;30(7):1092-1102.
85.    Jesus S, Marques AP, Duarte A, Soares E, Costa JP, Colaço M, et al. Chitosan nanoparticles: shedding light on immunotoxicity and hemocompatibility. Front Bioeng Biotechnol. 2020;8:100.
86.    Ramtoola Z, Lyons P, Keohane K, Kerrigan SW, Kirby BP, Kelly JG. Investigation of the interaction of biodegradable micro-and nanoparticulate drug delivery systems with platelets. J Pharm Pharmacol. 2011;63(1):26-32.
87.    Jiang G-B, Lin Z-T, Xu X-J, Zhang H, Song K. Stable nanomicelles based on chitosan derivative: In vitro antiplatelet aggregation and adhesion properties. Carbohydr Polym. 2012;88(1):232-238.
88.    Kim ES, Lee J-S, Lee HG. Nanoencapsulation of red ginseng extracts using chitosan with polyglutamic acid or fucoidan for improving antithrombotic activities. J Agric Food Chem. 2016;64(23):4765-4771.
89.    Kim ES, Lee J-S, Lee HG. Improvement of antithrombotic activity of red ginseng extract by nanoencapsulation using chitosan and antithrombotic cross-linkers: polyglutamic acid and fucodian. J Ginseng Res. 2021;45(2):236-245.
90.    Moraes A, Moreira Filho R, Passos C, Cunha A, Silva LAe, Freitas L, et al. Hemocompatibility of 2‐N‐3, 6‐O‐sulfated chitosan films. J Appl Polym Sci. 2019;136(9):47128.
91.    Asghar MA, Yousuf RI, Shoaib MH, Asghar MA. Antibacterial, anticoagulant and cytotoxic evaluation of biocompatible nanocomposite of chitosan loaded green synthesized bioinspired silver nanoparticles. Int J Biol Macromol. 2020;160:934-943.
92.    Ahmed SB, Mohamed HI, Al-Subaie AM, Al-Ohali AI, Mahmoud NM. Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its nano-copper composite. Sci Rep. 2021;11(1):1-9.
93.    Drozd NN, Lunkov A, Shagdarova BT, Zhuikova YV, Il’ina AV, Varlamov VP. Chitosan/heparin layer-by-layer coatings for improving thromboresistance of polyurethane. Surf Interfaces. 2021:101674.
94.    Herfena N, Setiasih S, Handayani S, Hudiyono S, editors. Evaluation of in-vitro dissolution profiles of partially purified bromelain from pineapple cores (Ananas comosus [L.] Merr) loaded in glutaraldehyde-crosslinked chitosan microspheres. AIP Conference Proceedings; 2020: AIP Publishing LLC.
95.    Li G, Huang J, Chen T, Wang X, Zhang H, Chen Q. Insight into the interaction between chitosan and bovine serum albumin. Carbohydr Polym. 2017;176:75-82.
96.    Bekale L, Agudelo D, Tajmir-Riahi H. Effect of polymer molecular weight on chitosan–protein interaction. Colloids Surf B Biointerfaces. 2015;125:309-317.
97.    Shagholani H, Ghoreishi SM, Mousazadeh M. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application. Int J Biol Macromol. 2015;78:130-136.
98.    Karpuraranjith M, Thambidurai S. Synergistic effect of chitosan-zinc-tin oxide colloidal nanoparticle and their binding performance on bovine albumin serum. Mater Chem Phys. 2017;199:370-378.
99.    Situ W, Xiang T, Liang Y. Chitosan-based particles for protection of proteins during storage and oral administration. Int J Biol Macromol. 2018;117:308-314.
100.    Nashaat D, Elsabahy M, El-Sherif T, Hamad MA, El-Gindy GA, Ibrahim EH. Development and in vivo evaluation of chitosan nanoparticles for the oral delivery of albumin. Pharm Dev Technol. 2019;24(3):329-337.
101.    Fletcher NA, Babcock LR, Murray EA, Krebs MD. Controlled delivery of antibodies from injectable hydrogels. Mater Sci Eng C Mater Biol Appl. 2016;59:801-806.
102.    Schubert M, Agdour S, Fischer R, Olbrich Y, Schinkel H, Schillberg S. A monoclonal antibody that specifically binds chitosan in vitro and in situ on fungal cell walls. J Microbiol Biotechnol. 2010;20(8):1179-1184.
103.    Caprifico AE, Foot PJ, Polycarpou E, Calabrese G. Overcoming the blood-brain barrier: Functionalised chitosan nanocarriers. Pharmaceutics. 2020;12(11):1013.
104.    Babac C, Yavuz H, Galaev IY, Pişkin E, Denizli A. Binding of antibodies to concanavalin A-modified monolithic cryogel. React Funct Polym. 2006;66(11):1263-1271.
105.    Uygun DA, Uygun M, Karagözler A, Öztürk N, Akgöl S, Denizli A. A novel support for antibody purification: Fatty acid attached chitosan beads. Colloids Surf B Biointerfaces. 2009;70(2):266-270.
106.    Pássaro ACM, Mozetic TM, Schmitz JE, da Silva IJ, Martins TD, Bresolin ITL. Human immunoglobulin G adsorption in epoxy chitosan/alginate adsorbents: evaluation of isotherms by artificial neural networks. Chem Prod Process Model. 2019;14(4).
107.    Gondim DR, Lima LP, de Souza MC, Bresolin IT, Adriano WS, Azevedo DC, et al. Dye ligand epoxide chitosan/alginate: a potential new stationary phase for human IgG purification. Adsorp Sci Technol. 2012;30(8-9):701-711.
108.    Gondim DR, Dias NA, Bresolin IT, Baptistiolli AM, Azevedo DC, Silva IJ. Human IgG adsorption using dye-ligand epoxy chitosan/alginate as adsorbent: influence of buffer system. Adsorption. 2014;20(8):925-934.
109.    Sun S, Tang Y, Fu Q, Liu X, Zhao Y, Chang C. Monolithic cryogels made of agarose–chitosan composite and loaded with agarose beads for purification of immunoglobulin G. Int J Biol Macromol. 2012;50(4):1002-1007.
110.    Kavaz D, Odabas S, Denkbas EB, Vaseashta A. A practical methodology for IgG purification via chitosan based magnetic nanoparticles. Dig J Nanomater Biostruct. 2012;7(3):1165.
111.    Khodaei S, Ghaedmohammadi S, Mohammadi M, Rigi G, Ghahremanifard P, Zadmard R, et al. Covalent immobilization of protein A on chitosan and aldehyde double-branched chitosan as biocompatible carriers for immunoglobulin G (IGg) Purification. J Chromatogr Sci. 2018;56(10):933-940.
112.    Borges J, Campiña JM, Silva AF. Chitosan biopolymer–F (ab′) 2 immunoconjugate films for enhanced antigen recognition. J Mater Chem B. 2013;1(4):500-511.
113.    Parween S, Bhatnagar I, Bhosale S, Paradkar S, Michael IJ, Rao CM, et al. Cross-linked chitosan biofunctionalized paper-based microfluidic device towards long term stabilization of blood typing antibodies. Int J Biol Macromol. 2020;163:1233-1239.
114.    Mirtajaddini SA, Fathi Najafi M, Vaziri Yazdi SA, Kazemi Oskuee R. Preparation of Chitosan Nanoparticles as a Capable Carrier for Antigen Delivery and Antibody Production. Iran J Biotechnol. 2021;19(4):32-40.
115.    Bowman K, Sarkar R, Raut S, Leong KW. Gene transfer to hemophilia A mice via oral delivery of FVIII–chitosan nanoparticles. J Control Release. 2008;132(3):252-259.
116.    Dhadwar S, Kiernan J, Wen J, Hortelano G. Repeated oral administration of chitosan/DNA nanoparticles delivers functional FVIII with the absence of antibodies in hemophilia A mice. J Thromb Haemost. 2010;8(12):2743-2750.
117.    Dhadwar SS. Chitosan-mediated oral gene therapy for hemophilia treatment and prophylactic tolerance 2011; Thesis. McMaster University. 
118.    Yerkesh Z. Oral administration of chitosan/DNA nanoparticles containing DNA coding for FVIII and FC IgG fragment or IL-10 for the modulation of immune responses to FVIII in hemophilia mice. 2016. Thesis. Nazarbayev University.