1. Qin QW, Ototake M, Noguchi K, Soma G, Yokomizo Y, Nakanishi T. Tumor necrosis factor alpha (TNF-α)-like factor, produced by macrophages in rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol. 2001; 11: 254-256.
2. Cava RJ. Structural chemistry and the local charge picture of copper oxide superconductors. Science. 1990; 247: 656- 662.
3. Tranquada JM, Sternlieb BJ, Axe JD, Nakamura Y, Uchida S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature. 1995; 375: 561-565.
4. Kwak K, Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea–Australia Rheol J. 2005; 17: 35-40.
5. Xu JF, JiW, Shen ZX, Tang SH, Ye XR, Jia DZ, Xin X Q. Preparation and characterization of CuO nanocrystals. J Solid State Chem. 1999; 147: 516-519.
6. Stoimenov PK. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002; 18: 679-686.
7. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Ag. 2009; 33: 587-590.
8. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater. 2005; 17: 5255-5262.
9. Rupareli JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia. 2008; 4: 707-771.
10. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966; 45(4): 493-496.
11. Tarpay MM, Welch DF, Marks MI. Antimicrobial susceptibility testing of Streptococcus pneumonia by micro-broth dilution. Antimicrob Agents Chemother. 1980; 18(4): 579-581.
12. Jagminas A, Kuzmarskyt J, Niaura G. Electrochemical formation and characterization of copper oxygenous compounds in alumina template from ethanolamine solutions. Appl Surf Sci. 2002; 201(1-4): 129-137.
13. Jagminas A, Niaura G, Kuzmarskyt J, Butkiene R. Surface-enhanced Raman scattering effect for copper oxygenous compounds array within the alumina template pores synthesized by ac deposi-tion from Cu(II) acetate solution. Appl Surf Sci. 2004; 225(1-4): 302-308.
14. Zhang YC, Tang JY, Wang GL, Zhang M, Hu XY. Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor. J Crys Growth. 2006; 294(2): 278-282.
15. Yoon K, Hoon Byeon J, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007; 373(2-3): 572-575.
16. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008; 4(3): 707-716.
17. Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello L, Tantillo G. Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem. 2005; 381(3): 607-616.
18. Lin YE, Vidic RD, Stout JE, Mc Cartney CA, Yu VL. Inactivation of Mycobacterium avium by copper and silver ions. Water Res. 1998; 32(7): 1997-2000.
19. Kim JH, Cho H, Ryu SE, Choi MU. Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu.
20. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995; 18(2): 321-336.
21. Liang X, Sun M, Li L, Qiao R, Chen K, Xiao Q, Xu F. Preparation and antibacterial activities of poly aniline/Cu0.05Zn0.95O nanocomposites. Dalton Trans. 2012; 41(9): 2804-2811.