1. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet. 2010;375(9725):1557-1568.
2. Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005;352(14):1436-1444.
3. Talan DA, Krishnadasan A, Gorwitz RJ, Fosheim GE, Limbago B, Albrecht V, et al. Comparison of Staphylococcus aureus from skin and soft-tissue infections in US emergency department patients, 2004 and 2008. Clin Infect Dis. 2011;53(2):144-149.
4. Mohammadi A, Ebrahimi A, Nemati S. Bacterial and Fungal Contamination of Elevator Buttons in University Schools of Isfahan University of Medical Sciences, Isfahan, Iran. Health Scope. 2016;5(4):e34428.
5. Morse S, F. Brooks G, C. Carroll K, S. Butel J, Mietzner T. Jawetz, Melnick & Adelberg’s Medical Microbiology. 26 ed2013.
6. den Reijer PM, Lemmens-den Toom N, Kant S, Snijders SV, Boelens H, Tavakol M, et al. Characterization of the humoral immune response during Staphylococcus aureus bacteremia and global gene expression by Staphylococcus aureus in human blood. PLoS One. 2013;8(1):e53391.
7. Boles BR, Horswill AR. agr-Mediated Dispersal of Staphylococcus aureus Biofilms. PLoS Pathog. 2008;4(4):e1000052.
8. Kobayashi SD, Malachowa N, DeLeo FR. Pathogenesis of Staphylococcus aureus Abscesses. Am J Pathol. 2015;185(6):1518-1527.
9. Kitara LD, Anywar AD, Acullu D, Odongo-Aginya E, Aloyo J, Fendu M. Antibiotic susceptibility of Staphylococcus aureus in suppurative lesions in Lacor Hospital, Uganda. Afr Health Sci. 2011;11 Suppl 1:S34-39.
10. Kaatz GW, McAleese F, Seo SM. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother. 2005;49(5):1857-1864.
11. Ansari MA, Khan HM, Khan AA, Pal R, Cameotra SS. Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. J Nanoparticle Res. 2013;15(10):1970.
12. Fathi Azar Khavarani M, Najafi M, Shakibapour Z, Zaeifi D. Kinetics activity of Yersinia Intermedia Against ZnO Nanoparticles Either Synergism Antibiotics by Double-Disc Synergy Test Method. Iran J Biotechnol. 2016;14(1):39-44.
13. Shahbazi E, Moreshedzadeh F, Zaeifi D. Bacteriostatic Potency of Fe2O3 Against Enterococcus Faecalis in Synergy with Antibiotics by DDST Method. Avicenna J Med Biotechnol. 2019;11(2):176-179.
14. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4(3):707-716.
15. Food U, Administration D. Division of Antiinfective and Ophthalmology Drug Products (HFD-520)—Microbiological data for antibacterial drug products—development, analysis, and presentation. FDA; 2005.
16. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-79.
17. Jastrzębska AM, Karwowska E, Olszyna AR, Kunicki A. Influence of bacteria adsorption on zeta potential of Al2O3 and Al2O3/Ag nanoparticles in electrolyte and drinking water environment studied by means of zeta potential. SURF COAT TECH. 2015;271:225-233.
18. Jastrzebska AM, Karwowska E, Olszyna AR, Kunicki AR. Comparative Assessment of Antimicrobial Efficiency of Ionic Silver, Silver Monoxide, and Metallic Silver Incorporated onto an Aluminum Oxide Nanopowder Carrier. J Nanosci. 2013;2013:12.
19. Stengl V, Houšková V, Bakardjieva S, Murafa N, Maříková M, Opluštil F, et al. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents 2010. 1080–1088.
20. Lorenz CS, Wicht A-J, Guluzada L, Luo L, Jäger L, Crone B, et al. Nano-sized Al2O3 reduces acute toxic effects of thiacloprid on the non-biting midge Chironomus riparius. PLoS One. 2017;12(5):e0176356.
21. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8:543.
22. Li X, Zhou S, Fan W. Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus. Int J Environ Res Public Health. 2016;13(6):575.
23. Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology. 2008;3:145.
24. Raghupathi KR, Koodali RT, Manna AC. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir. 2011;27(7):4020-4028.
25. Wu D, Chen Z, Cai K, Zhuo D, Chen J, Jiang B. Investigation into the antibacterial activity of monodisperse BSA-conjugated zinc oxide nanoparticles. CURR APPL PHYS. 2014;14(11):1470-1475.
26. Yeaman MR, Yount NY. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol Rev. 2003;55(1):27.
27. McAleese F, Petersen P, Ruzin A, Dunman PM, Murphy E, Projan SJ, et al. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother. 2005;49(5):1865-1871.
28. Vinardell MP, Sordé A, Díaz J, Baccarin T, Mitjans M. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size. J Nanoparticle Res. 2015;17(2):80.