Role of nanotechnology in iron deficiency

Document Type : Review Paper

Authors

1 Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, India

2 Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun-248007, Uttarakhand, India

3 Minab higher education center, University of Hormozgan, Bandar Abbas, Iran

4 Department of Biology, University of Mohaghegh Ardabili, Ardabili, Iran

5 Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran

Abstract

Micronutrients are one of the major groups of nutrients required by the body. Vitamins and minerals are considered micronutrients that are vital for growth, immune function, brain development, and many other important functions. they also play a role in preventing and fighting diseases. Malnutrition (undernutrition) is caused by a lack of nutrients and is the leading cause of death in the world. Biofortification of staple crops with micronutrients has been proposed as a potential technique for combating malnutrition by enriching target food crops. Iron deficiency is one of the most frequent dietary problems worldwide, affecting both industrialized and developing nations. Iron deficiency anemia is a condition in which the blood doesn’t have enough healthy red blood cells. It may be due to blood loss, lack of red blood cell production, and high rates of red blood cell destruction, but it leads to reduced oxygen flow to the body’s organs and causes fatigue, skin pallor, shortness of breath, light-headedness, dizziness, or a fast heartbeat. Nanotechnology is the creation and use of innovative structures, materials, and systems in a variety of disciplines, including agriculture, food, and medicine. The study and management of matter at sizes of 1 to 100 nanometers is known as nanotechnology. It can help with everything from food production to manufacturing, and it can make a big impact on food quality and safety, and also the health benefits of foods. While nanotechnology may be the greatest technique to reduce anemia’s effects while also boosting iron bioavailability in the blood, it has some negative effect on the body that depends on the duration of exposure and the level of intake. In this paper, we discuss how micronutrient deficiencies and anemia can be prevented by using nano techniques as well as how they impact the human body. 

Keywords


1. Ahmed T, Hossain M, Sanin KI. Global burden of maternal  and child undernutrition and micronutrient deficiencies. Ann Nutr Metab. 2012; 61(1):8-17.  
2.    Olson R, Gavin-Smith B, Ferraboschi C, Kraemer K. Food  fortification: The advantages, disadvantages and lessons from sight and life programs. Nutrients. 2021;13(4):1118. 
3.    De Benoist B, Dary O, Hurrell R. Guidelines on food  fortification with micronutrients. Allen L, editor. Geneva: World Health Organization; 2006. 
4.     Kumari A, Chauhan AK. Iron nanoparticles as a promising compound for food fortification in iron deficiency anemia: a review. J Food Sci Techno. 2022;59(9):3319-3335.
5.    Mackay HM. Anemia in infancy: its prevalence and  prevention. Archives of Disease in Childhood. 1928;3(15): 117. 
6.    Smetana S, Leonhardt L, Kauppi SM, Pajic A, Heinz V. Insect  margarine: Processing, sustainability and design. J Clean Prod. 2020;264:121670. 
7.    Kumar D, Patel KP, Ramani VP, Shukla AK, Meena RS.  Management of micronutrients in soil for the nutritional  security. InNutrient Dynamics for Sustainable Crop Production, Springer, Singapore. 2020;103-134.  
8.    Muthayya S, Hall J, Bagriansky J, Sugimoto J, Gundry D, Matthias D, et al. Rice fortification: an emerging opportunity to contribute to the elimination of vitamin and mineral deficiency worldwide. Food Nutr Bull. 2012; 33(4):296-307. 
9.     Mannar MV, Hurrell RF. Food fortification in a globalized world. Academic Press; 2018.  
10.    Fletcher RJ, Bell IP, Lambert JP. Public health aspects of food fortification: a question of balance. Proc Nutr Soc. 2004;63(4):605-614. 
11.    Osendarp SJ, Martinez H, Garrett GS, Neufeld LM, De Regil LM, Vossenaar M, et al. Large-scale food  fortification and biofortification in low-and middle-income countries: a review of programs, trends, challenges, and evidence gaps. Food Nutr Bull. 2018;39(2):315-331. 
12.    Welch RM, Graham RD. A new paradigm for world  agriculture: meeting human needs: productive, sustainable, nutritious. Field Crops Res. 1999;60(1-2): 1-0. 
13.     Chadare FJ, Idohou R, Nago E, Affonfere M, Agossadou J, Fassinou TK et al. Conventional and food‐to‐food fortification: An appraisal of past practices and lessons learned. Food Sci. Nutr. 2019;7(9):2781-2795. 
14.     Liyanage C, Zlotkin S. Bioavailability of iron from micro encapsulated iron sprinkle supplement. Food Nutr Bull. 2002;23(1):133-137. 
15.    Shubham K, Anukiruthika T, Dutta S, Kashyap AV, Moses JA, Anandharamakrishnan C. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends Food Sci Technol. 2020;99:58-75. 
16.    Horton S, Alderman H, Rivera JA. Hunger and malnutrition. Global Crises, Global Solutions: Costs and Benefits. 2009: 305-354. 
17.    Das JK, Salam RA, Kumar R, Bhutta ZA. Micronutrient fortification of food and its impact on woman and child health: a systematic review. Syst. Rev. 2013;2(1):1-24.
18.     Hurrell R, Ranum P, de Pee S, Biebinger R, Hulthen L, Johnson Q et al. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of current national wheat flour fortification programs. Food Nutr Bull. 2010;31(1):S7-21. 
19.     Victora CG, Barros FC, Assunção MC, Restrepo-Méndez MC, Matijasevich A, Martorell R. Scaling up maternal nutrition programs to improve birth outcomes: a review of implementation issues. Food Nutr Bull. 2012;33(1):S6-26. 
20.    Barkley JS, Wheeler KS, Pachón H. Anemia prevalence may be reduced among countries that fortify flour. Br J Nutr. 2015; 114(2):265-273. 
21.     Pachon H, Spohrer R, Mei Z, Serdula MK. Evidence of the effectiveness of flour fortification programs on iron status and anemia: A systematic review. Nutr Rev 2015; 73(11): 780-795. 
22.    Assunçao MC, Santos IS, Barros AJ, Gigante DP, Victora CG. Flour fortification with iron has no impact on anemia in urban Brazilian children. Public Health Nutr. 2012; 15(10): 1796-1801. 
23.    Martorell R, Ascencio M, Tacsan L, Alfaro T, Young MF, Addo OY, et al. Effectiveness evaluation of the food fortification program of Costa Rica: impact on anemia prevalence and hemoglobin concentrations in women and children. Am J Clin Nutr. 2015;101(1):210-217. 
24.     Hertrampf E, Cortés F. National food-fortification program with folic acid in Chile. Food and nutrition bulletin. 2008; 29(1): S231-237. 
25.    De Benoist B, Cogswell M, Egli I, McLean E. Worldwide prevalence of anemia 1993-2005.
26.     Carpenter CE, Mahoney AW. Contributions of heme and nonheme iron to human nutrition. Crit Rev Food Sci Nutr. 1992; 31(4): 333-367. 
27.     Hunt JR. Moving toward a plant-based diet: are iron and zinc at risk?. Nutr Rev. 2002;60(5):127-134. 
28.     Miret S, Simpson RJ, McKie AT. Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr. 2003; 23(1):283-301. 
29.    Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010; 91(5): 1461S-7S. 
30.     Ru Y, Pressman EK, Cooper EM, Guillet R, Katzman PJ, Kent TR, et al. Iron deficiency and anemia are prevalent in women with multiple gestations. Am J Clin Nutr. 2016; 104(4): 1052-60. 
31.     Miller JL. Iron deficiency anemia: a common and curable disease. Cold Spring Harbor perspectives in medicine. 2013;3(7): a011866. 
32.    Yassin MA, Soliman AT, De Sanctis V, Yassin KS, Abdulla MA. Final height and endocrine complications in patients with β-thalassemia intermedia: Our experience in non transfused versus infrequently transfused patients and correlations with liver iron content. Mediterr J Hematol  Infect Dis. 2019;11(1):582. 
33.    Lee AI, Okam MM. Anemia in pregnancy. Hematology/ Oncology Clinics. 2011;25(2):241-259. 
34.    Busti F, Campostrini N, Martinelli N, Girelli D. Iron deficiency in the elderly population, revisited in the hepcidin era. Front Pharmacol. 2014;5:83.
35.    Gil-Santana L, Cruz LA, Arriaga MB, Miranda PF, Fukutani KF, Silveira-Mattos PS et al. Tuberculosis-associated anemia is linked to a distinct inflammatory profile that persists after initiation of antitubercular therapy. Sci Rep. 2019;9(1):1-8. 
36.    Saboor M, Zehra A, Khansa Qamar M. Disorders associated with malabsorption of iron: A critical review. Pak J Med Sci. 2015;31(6):1549. 
37.    Jimenez JA, Rodriguez S, Gamboa R, Rodriguez L, Garcia HH, Cysticercosis Working Group in Peru. Diphyllobothrium  pacificum infection is seldom associated with megaloblastic anemia. Am J Trop Med Hyg. 2012;87(5):897. 
38.     Wu AC, Lesperance L, Bernstein H. Screening for iron deficiency. Pediatr Rev. 2002;23(5):171-178. 
39.    Bailey RL, West Jr KP, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab. 2015;66(2): 22-33. 
40.    Goudia BD, Hash CT. Breeding for high grain Fe and Zn levels in cereals. IJIAS. 2015;12(2):342-354. 
41.    White PJ, Broadley MR. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182(1):49-84.
42.    Tang J, Zou C, He Z, Shi R, Ortiz-Monasterio I, Qu Y, Zhang Y. Mineral element distributions in milling fractions of  Chinese wheats. J Cereal Sci. 2008;48(3):821-828. 
43.     Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH. Biofortification: a new tool to reduce micronutrient malnutrition. Food nutr bull.  2011;32(1):S31-40. 
44.     Laurie SM, Van Jaarsveld PJ, Faber M, Philpott MF, Labuschagne MT. Trans-β-carotene, selected mineral content and potential nutritional contribution of 12 sweet potato varieties.  J Food Compost Anal. 2012; 27(2):151-159. 
45.    de Haan S, Burgos G, Ccanto R, Arcos J, Scurrah M, Salas E, Bonierbale M. Effect of production environment, genotype and process on the mineral content of native bitter potato cultivars converted into white chuño. J Sci Food Agric. 2012;92(10):2098-2105. 
46.    Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv.  2009;27(1): 76-83. 
47.    Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter. 2016; 12(11):2826-2841. 
48.    Qureshi MA, Karthikeyan S, Karthikeyan P, Khan PA, Uprit S, Mishra UK. Application of nanotechnology in food and dairy processing: An overview. Pak J Food Sci. 2012;22(1): 23-31. 
49.    Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E. Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nut. 2003;133(12):4077-4082. 
50.    Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003; 54(2): 177-182. 
51.    Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA. Application of nanotechnology in food science: perception and overview. Front Microbiol. 2017;8:1501. 
52.    Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A. Nanotechnology in agro-food: from field to plate. Food Res. Int. 2015;69: 381-400. 
53.    Hulla JE, Sahu SC, Hayes AW. Nanotechnology: History and future. Human & experimental toxicology. 2015;34(12): 1318-1321. 
54.    Iijima S. Helical microtubules of graphitic carbon. nature. 1991;354(6348):56-58. 
55.    Kaiser DL, Standridge S, Friedersdorf L, Geraci CL, Kronz F, Meador MA. National Nanotechnology Initiative Strategic Plan. 2014.
56.    Dulta K, Koşarsoy Ağçeli G, Chauhan P, Jasrotia R, Chauhan PK, Ighalo JO. Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sust Environment Res. 2022;32(1):1-5. 
57.    Ward RJ, Legssyer R, Henry C, Crichton RR. Does the haemosiderin iron core determine its potential for chelation and the development of iron-induced tissue damage?. Journal of inorganic biochemistry. 2000;79(1-4): 311-317.
58.    Gharibzahedi SM, Jafari SM. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science & Technology. 2017;62:119-132. 
59.    Mahler GJ, Esch MB, Tako E, Southard TL, Archer SD, Glahn RP et al. Oral exposure to polystyrene nanoparticles affects iron absorption. Nature nanotechnology. 2012;7(4):264-771. 
60.    Chamorro S, Gutiérrez L, Vaquero MP, Verdoy D, Salas G, Luengo Y, Brenes A, Teran FJ. Safety assessment of chronic oral exposure to iron oxide nanoparticles. Nanotechnology. 2015;26(20):205101. 
61.    Aslam MF, Frazer DM, Faria N, Bruggraber SF, Wilkins SJ, Mirciov C et al. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. The FASEB Journal. 2014; 28(8): 3671-8. 
62.    Blanco-Rojo R, Vaquero MP. Iron bioavailability from food fortification to precision nutrition. A review. Innov Food Sci Emerg. 2019;51:126-138. 
63.    Shamah-Levy T, Villalpando S, Rivera-Dommarco JA, Mundo-Rosas V, Cuevas-Nasu L, Jiménez-Aguilar A. Ferrous gluconate and ferrous sulfate added to a complementary food distributed by the Mexican nutrition program Oportunidades have a comparable efficacy to reduce iron deficiency in toddlers. J Pediatr Gastroenterol Nutr. 2008; 47(5): 660-6. 
64.    Toxqui L, Pérez-Granados AM, Blanco-Rojo R, Wright I, González-Vizcayno C, Vaquero MP. Effects of an iron or iron and vitamin D–fortified flavored skim milk on iron metabolism: a randomized controlled double-blind trial in iron-deficient women. Journal of the American College of Nutrition. 2013;32(5):312-320. 
65.     Blanco-Rojo R, Pérez-Granados AM, Toxqui L, González Vizcayno C, Delgado MA, Vaquero MP. Efficacy of a microencapsulated iron pyrophosphate-fortified fruit juice: a randomised, double-blind, placebo-controlled study in Spanish iron-deficient women. Br J Nutr. 2011; 105(11):1652-1659. 
66.    Akasapu K, Ojah N, Gupta AK, Choudhury AJ, Mishra P. An innovative approach for iron fortification of rice using  cold plasma. Food Res Int. 2020; 136: 109599. 
67.    Karn SK, Chavasit V, Kongkachuichai R, Tangsuphoom N. Shelf stability, sensory qualities, and bioavailability of iron-fortified Nepalese curry powder. Food Nutr Bull. 2011; 32(1): 13-22.16.
68.    Cheng J, Kenaan A, Zhao D, Qi D, Song J. Photo polymerizable ferrous sulfate liposomes as vehicles for iron fortification of food. NBM. 2020;30:102286. 
69.    Srinivasu BY, Mitra G, Muralidharan M, Srivastava D, Pinto J, Thankachan P et al. Thomas TS. Beneficiary effect of nanosizing ferric pyrophosphate as food fortificant in iron deficiency anemia: evaluation of bioavailability, toxicity and plasma biomarker. Rsc Advances. 2015;5(76):61678-61687. 
70.    Wu H, Zhu S, Zeng M, Liu Z, Dong S, Zhao Y et al. Enhancement of non-heme iron absorption by anchovy (Engraulis japonicus) muscle protein hydrolysate involves a nanoparticle-mediated mechanism. J Agric Food Chem. 2014;62(34):8632-8639. 
71.    Pereira DI, Bruggraber SF, Faria N, Poots LK, Tagmount MA, Aslam MF et al. Nanoparticulate iron (III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. NBM. 2014;10(8):1877-1886. 
72.     Zariwala MG, Elsaid N, Jackson TL, López FC, Farnaud S, Somavarapu S et al. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles. Int J Pharm. 2013;456(2):400-407. 
73.    Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR. Controlled vaccine release in the gutassociated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J Control Release. 1990; 11(3):205-214. 
74.     Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MH, Silva AM et al. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Deliv. 2012;2012. 
75.    Aungst BJ. Intestinal permeation enhancers. J Pharm Sci. 2000;89(4):429-42. 
76.    Hosny KM, Banjar ZM, Hariri AH, Hassan AH. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia. Drug Des Devel Ther. 2015;9:313. 
77.     Magnetite Nanoparticles As a Single Dose Treatment for Iron Deficiency Anemia. https://patents.google.com/ patent/WO2010034319A1/en, 2010. 
78.    Hurrell RF. Fortification: overcoming technical and practical barriers. J Nutr. 2002; 132(4):806S-812S. 
79.     McClements DJ, Xiao H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Sci. Food. 2017;1(1):1-3. 
80.    Shukla A, Dasgupta N, Ranjan S, Singh S, Chidambram R. Nanotechnology towards prevention of anemia and osteoporosis: from concept to market. Biotechnol. 2017; 31(5):863-879. 
81.    Shafie EH, Keshavarz SA, Kefayati ME, Taheri F, Sarbakhsh P, Vafa MR. The effects of nanoparticles containing iron on blood and inflammatory markers in comparison to ferrous sulfate in anemic rats. Int J Prev Med. 2016; 7. 
82.    Foujdar R, Chopra HK, Bera MB, Chauhan AK, Mahajan P. Effect of probe ultrasonication, microwave and sunlight on biosynthesis, bioactivity and structural morphology of punica granatum peel’s polyphenols-based silver nanoconjugates. Waste and Biomass Valorization. 2021; 12(5):2283-302. 
83.    Verma RS, Motzok I, Chen SS, Rasper J, Ross HU. Effect of storage in flour and of particle size on the bioavailability of elemental iron powders for rats and humans. Analyt Chem. 1977; 60(4):759-765. 
84.    Shukla A, Dasgupta N, Ranjan S, Singh S, Chidambram R. Nanotechnology towards prevention of anemia and osteoporosis: from concept to market. Biotechnolo. 2017; 31(5):863-879. 
85.    Powell JJ, Bruggraber SF, Faria N, Poots LK, Hondow N, Pennycook TJ et al. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity. NBM. 2014;10(7):1529-1538. 
86.     Stoltzfus RJ. Iron deficiency: global prevalence and consequences. Food Nutr Bull. 2003; 24(1):S99-103. 
87.    Devalapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical product development. J Pharma Sci. 2007;96(10):2547-2565. 
88.    Choi JH, Chen KH, Han JH, Chaffee AM, Strano MS. DNA Aptamer‐Passivated Nanocrystal Synthesis: A Facile Approach for Nanoparticle‐Based Cancer Cell Growth Inhibition. Small. 2009;5(6):672-675. 
89.    Jain K K, Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener Dis. 2007; 4. 
90.     Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers. Adv. Drug Deliv Rev. 2009;61(10):768-784. 
91.    Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009;86(3):215-223. 
92.    Debbage P. Targeted drugs and nanomedicine: present and future. Curr Pharm Des. 2009;15(2):153-172. 
93.    Dulta K, Koşarsoy Ağçeli G, Chauhan P, Jasrotia R, Chauhan PK. A novel approach of synthesis zinc oxide nanoparticles by bergenia ciliata rhizome extract: antibacterial and anticancer potential. J Inorg Organomet Polym Mater. 2021;31:180-190.
94.    Satzl S, Henn C, Christoph P, Kurz P, Stampfl U, Stampfl S et al. The efficacy of nanoscale poly [bis (trifluoroethoxy) phosphazene] (PTFEP) coatings in reducing thrombogenicity and late in-stent stenosis in a porcine coronary artery model. Invest Radiol. 2007;42(5):303-311. 
95.     Lundin KE, Simonson OE, Moreno P, Zaghloul EM, Oprea II, Svahn MG, Smith CI. Nanotechnology approaches for gene transfer. Genetica. 2009;137(1):47-56. 
96.    Wiradharma N, Tong YW, Yang YY. Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect. Biomaterials. 2009; 30(17): 3100-9. 
97.    Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, Park RW, Kim IS, Jeong SY, Kim K, Kwon IC. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J  Control Release. 2008;127(3):208-218.
98.    Pateiro M, Gómez B, Munekata PE, Barba FJ, Putnik P, Kovačević DB, Lorenzo JM. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules. 2021;26(6):1547. 
99.     Iyer S, Chand Di, Nanotechnology in Iron Deficiency Anemia: A review. in ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) 2020. 
100.     Mehansho H. Iron fortification technology development: new approaches. Nut J. 2006;136(4):1059-1063. 
101.     Dulta K, Koşarsoy Ağçeli G, Chauhan P, Jasrotia R, Chauhan PK. Ecofriendly synthesis of zinc oxide nanoparticles by Carica papaya leaf extract and their applications. J Cluster Sci. 2021:1-5.
102.     Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1) 1-33.