1. Levitt SH, Purdy JA, Perez CA, Vijayakumar S. Technical Basis of Radiation Therapy Practical Clinical Applications. 4th ed. Germany, Berlin, Heidelberg: Springer‑Verlag; 2006. p. 492‑501.
2. Laliberte L, Fennell ML, Papandonatos G. The relationship of membership in research networks to compliance with treatment guidelines for early‑stage breast cancer. Med Care 2005; 43:471‑479.
3. Jalilian M, Arbabi F. Cutaneous complication after electron beam therapy in breast cancer. J Res Med Sci 2005; 10:368‑370.
4. Mesbahi A. A rewiew on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Reports of practical oncology and radiotherapy 2010; 15: 176–180.
5. Vyas V, Palmer L, Mudge R, Jiang R, Fleck A, Schaly B, Osei E, Charland P. On bolus for megavoltage photon and electron radiation therapy. Medical Dosimetry. 2013; 38(3):268-273.
6. Tobler M, Leavitt DD. Design and production of wax compensators for electron treatments of the chest wall. Med Dosim 1996; 21:199‑206.
7. Perez CA, Brady LW. Principle and Practice of Radiation Oncology. 5th ed. Philadelphia: Lippincott –Raven; 2008.P:79-119, 1269-1445.
8. Cho SH. Estimation of tumors dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 2005; 50: 163–173.
9. Choi GH, Seo SJ, Kim KH, Kim HT, Park SH, Lim JH, Kim JK. Photon activated therapy (PAT) using monochromatic Synchrotron x-rays and iron oxide nanoparticles in a mouse tumor model: feasibility study of PAT for the treatment of superficial malignancy. Radiation Oncology. 2012; 7(1):184.
10. Lin Y , McMahon SJ , Scarpelli M, Paganetti H, Schuemannn J, “comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: Monte Carlo simulation “ Phys Med Biol. 2014; 59:7675-7689.
11. Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S, Pervez N, Yee D, Moore R, Roa W. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clinical and Investigative Medicine. 2008:E160-167.
12. Zhang SX, Gao J, Buchholz TA, Wang Z, Salehpour MR, Drezek RA, Yu TK. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomedical microdevices. 2009; 11(4):925.
13. Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 2005; 50: 163–173.
14. Andreo P. Monte Carlo simulations in radiotherapy dosimetry. Radiation Oncology. 2018; 13(1):121.
15. Moradi F, Ung NM, Khandaker MU, Mahdiraji GA, Saad M, Malik RA, Bustam AZ, Zaili Z, Bradley DA. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators. Physics in Medicine & Biology. 2017; 62(16):6550.
16. Toossi MT, Mohamadian N, Mohammadi M, Ghorbani M, Hassani M, Khajetash B, Khorshidi F, Knaup C. Assessment of skin dose in breast cancer radiotherapy: on-phantom measurement and Monte Carlo simulation. Reports of Practical Oncology and Radiotherapy. 2020;25(3):456-461.
17. Gray T, Bassiri N, David S, Patel DY, Stathakis S, Kirby N, Mayer KM. A detailed experimental and Monte Carlo analysis 6 MV and 18 MV external beam energies in a macroscopic scale. Applied Radiation and Isotopes. 2021 ;171:109638.
18. Khosravi H, Ghazikhanlousani K, Rahimi A. Use of gold nanoparticles in MAGIC-f gels to 18 MeV photon enhancement. Nanomed J. 2019;6(1):67-73.