1. Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol. 2019;124:148-154.
2. Alagarasi A. Chapter-introduction to nanomaterials.
3. Aygün A, Özdemir S, Gülcan M, Cellat K, Şen F. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J Pharm Biomed Anal. 2020;178:112970.
4. Khatami M, Mortazavi SM, Kishani-Farahani Z, Amini A, Amini E, Heli H. Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency. Iran. J Biotechnol.2017;15(2):95.
5. Kanwal Z, Raza MA, Riaz S, Manzoor S, Tayyeb A, Sajid I et al. Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@ AgNPs) and their density-dependent antibacterial activity. R Soc Open Sci. 2019;6(5):182135.
6. Karpagam R. Global research output of nanobiotechnology research: A scientometrics study. Curr Sci. 2014; 10;1490-1499.
7. Singh P, Pandit S, Garnaes J, Tunjic S, Mokkapati VR et al. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomedicine. 2018;13:3571-91.
8. Waris A, Din M, Ali A, Afridi S, Baset A, Khan AU et al. Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review. Open Life Sci. 2021;16(1):14-30.
9. Anthony KJ, Murugan M, Gurunathan S. Biosynthesis of silver nanoparticles from the culture supernatant of Bacillus marisflavi and their potential antibacterial activity. J Ind Eng Chem. 2014;20(4):1505-1510.
10. Shakibaie M, Mohazab NS, Mousavi SA. Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans. Jundishapur J Microbiol. 2015;8(9):e26381.
11. Arole VM, Munde SV. Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. J Mater Sci. 2014; 1:89-93.
12. Kumari S, Tehri N, Gahlaut A, Hooda V. Actinomycetes mediated synthesis, characterization, and applications of metallic nanoparticles. Inorg Nano-Met Chem. 2020;51(10):1386-1395.
13. Guilger-Casagrande M, Lima RD. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287.
14. Ameen F, AlYahya S, Govarthanan M, ALjahdali N, Al-Enazi N, Alsamhary K et al. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J Mol Struct. 2020;1202:12723.
15. Taran M, Rad M, Alavi M. Antibacterial activity of copper oxide (CuO) nanoparticles biosynthesized by Bacillus sp. FU4: optimization of experiment design. Pharm Sci. 2017;23(3):198-206.
16. Parthasarathy R, Ramachandran R, Kamaraj Y, Dhayalan S. Zinc Oxide Nanoparticles Synthesized by Bacillus cereus PMSS-1 Induces Oxidative Stress-Mediated Apoptosis via Modulating Apoptotic Proteins in Human Melanoma A375 Cells. J Clust Sci. 2020:1-2.
17. Paulkumar K, Rajeshkumar S, Gnanajobitha G, Vanaja M, Malarkodi C, Annadurai G. Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity. Int Sch Res Notices. 2013;2013:1-8
18. Płaza GA, Chojniak J, Mendrek B, Trzebicka B, Kvitek L, Panacek et al. Synthesis of silver nanoparticles by Bacillus subtilis T‐1 growing on agro‐industrial wastes and producing biosurfactant. IET Nanobiotechnol. 2016;10(2):62-68.
19. Gopinath V, Velusamy P. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim. Acta A Mol Biomol Spectrosc. 2013;106:170-174.
20. Zaki S, Etarahony M, Elkady M, Abd-El-Haleem D. The use of bioflocculant and bioflocculant-producing Bacillus mojavensis strain 32A to synthesize silver nanoparticles. J Nanomater. 2014;2014:8-8
21. Wei X, Luo M, Li W, Yang L, Liang X, Xu L et al . Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol. 2012;103(1):273-278.
22. Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol. 2016;44(4):1127-1132.
23. Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011:1-16
24. Banu AN, Balasubramanian C. Extracellular synthesis of silver nanoparticles using Bacillus megaterium against malarial and dengue vector (Diptera: Culicidae). Parasitol Res. 2015;114(11):4069-4079.
25. Mehrotra T, Nagabooshanam S, Singh R. Electrochemical evaluation of bacillus species for rapid biosynthesis of silver nanoparticles: application in domestic wastewater treatment. In 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN) 2019;456-460.
26. Gan L, Zhang S, Zhang Y, He S, Tian Y. Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Prep. Biochem. Biotechnol. 2018;48(7):582-588.
27. Tariq F, Ahmed N, Afzal M, Khan MA, Zeshan B. Synthesis, Characterization and antimicrobial activity of Bacillus subtilis-derived silver nanoparticles against multidrug-resistant bacteria. Jundishapur J.Microbiol. 2020;13(5): e91934.
28. Velmurugan P, Iydroose M, Mohideen MH, Mohan TS, Cho M, Oh BT. Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity. Bioprocess Biosyst Eng. 2014;37(8):1527-1534.
29. Gurunathan S, Park JH, Han JW, Kim JH. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomedicine. 2015;10:4203.
30. Hsueh YH, Lin KS, Ke WJ, Hsieh CT, Chiang CL, Tzou DY et al.The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PloS one. 2015;10(12):e0144306.
31. Sarangadharan S, Nallusamy S. Biosynthesis and characterization of silver nanoparticles produced by Bacillus licheniformis. Int J Pharma Bio Sci.2015;4(4):236.
32. Rangarajan S, Verekar S, Deshmukh SK, Bellare JR, Balakrishnan A, Sharma S et al. Evaluation of anti‐bacterial activity of silver nanoparticles synthesised by coprophilous fungus PM0651419. IET Nanobiotechnol. 2018;12(2):106-115.
33. Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech. 2014;4(2):121-126.
34. Silambarasan S, Abraham J. Biosynthesis of silver nanoparticles using the bacteria Bacillus cereus and their antimicrobial property. Int J Pharm Pharm Sci. 2012;4:536-540.
35. Momin B, Rahman S, Jha N, Annapure US. Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity. Bioprocess Biosyst Eng. 2019;42(4):541-553.
36. Shanthi S, Jayaseelan BD, Velusamy P, Vijayakumar S, Chih CT, Vaseeharan B. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb. Pathog.2016;93:70-77.
37. Samuel MS, Jose S, Selvarajan E, Mathimani T, Pugazhendhi A. Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. J Photochem Photobiol B, Biol. 2020;202:111642.
38. Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SR, Gurunathan S. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf B. 2010;75(1):335-341.
39. Mukherjee K, Gupta R, Kumar G, Kumari S, Biswas S, Padmanabhan P. Synthesis of silver nanoparticles by Bacillus clausii and computational profiling of nitrate reductase enzyme involved in production. J Genet Eng Biotechnol. 2018;16(2):527-536.
40. Liu J, Qin G, Raveendran P, Ikushima Y. Facile “green” synthesis, characterization, and catalytic function of β‐D‐glucose‐stabilized Au nanocrystals. Chem Eur J. 2006;12(8):2131-2138.
41. Selvakumar R, Aravindh S, Ashok AM, Balachandran YL. A facile synthesis of silver nanoparticle with SERS and antimicrobial activity using Bacillus subtilis exopolysaccharides. J Exp Nanosci. 2014;9(10):1075-1087.
42. Sutherland IW. Biotechnology of microbial exopolysaccharides. Cambridge University Press; 1990.
43. Pouliot JM, Walton I, Nolen-Parkhouse M, Abu-Lail LI, Camesano TA. Adhesion of Aureobasidium pullulans Is Controlled by Uronic Acid Based Polymers and Pullulan. Biomacromolecules.2005;6(2):1122-1131.
44. Hosseini-Abari A, Emtiazi G, Lee SH, Kim BG, Kim JH. Biosynthesis of silver nanoparticles by Bacillus stratosphericus spores and the role of dipicolinic acid in this process. Appl Biochem Biotechnol. 2014;174(1):270-282.
45. Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4(8):858-864.
46. Joseph S, Mathew B. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochim. Acta A Mol. 2015;136:1371-1379.
47. Armendariz V, Herrera I, Jose-Yacaman M, Troiani H, Santiago P et al. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res. 2004;6(4):377-382.
48. Hussain MH, Abu Bakar NF, Mustapa AN, Low KF, Othman NH, Adam F. Synthesis of various size gold nanoparticles by chemical reduction method with different solvent polarity. Nanoscale Res Lett. 2020;15(1):1-0.
49. Jameel ZN. Synthesis of the gold nanoparticles with novel shape via chemical process and evaluating the structural, morphological and optical properties. Energy Procedia. 2017;119:236-241.
50. Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol. 1980;141(2):876-887.
51. Reddy AS, Chen CY, Chen CC, Jean JS, Chen HR, Tseng MJ et al. Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol. 2010;10(10):6567-6574.
52. Nadaf NY, Kanase SS. Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab J Chem.2019;12(8):4806-4814.
53. Lim K, Macazo FC, Scholes C, Chen H, Sumampong K, Minteer SD. Elucidating the mechanism behind the bionanomanufacturing of gold nanoparticles using Bacillus subtilis. ACS Appl Bio Mater. 2020;3(6):3859-3867.
54. Li Y, Li Y, Li Q, Fan X, Gao J, Luo Y. Rapid biosynthesis of gold nanoparticles by the extracellular secretion of Bacillus niabensis 45: characterization and antibiofilm activity. J Chem. 2016;2016:1-7.
55. Thirumurugan A, Ramachandran S, Tomy NA, Jiflin GJ, Rajagomathi G. Biological synthesis of gold nanoparticles by Bacillus subtilis and evaluation of increased antimicrobial activity against clinical isolates. Korean J Chem Eng.2012;29(12):1761-1765.
56. Aldeen WE, Bingham M, Aiderzada A, Kucera J, Jense S, Carroll KC. Comparison of the TOX A/B test to a cell culture cytotoxicity assay for the detection of Clostridium difficile in stools. Diagn Microbiol Infect Dis.2000;36(4):211-213.
57. Barbut F, Decre D, Lalande V, Burghoffer B, Noussair L, Gigandon A, et al. Clinical features of Clostridium difficile-associated diarrhoea due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. J Med Microbiol. 2005;54(2):181-185.
58. Bartlett JG, Gerding DN. Clinical recognition and diagnosis of Clostridium difficile infection. Clin Infect Dis. 2008;46(1):12-18.
59. Bertok T, Sediva A, Katrlik J, Gemeiner P, Mikula M, Nosko M et al. Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles. Talanta. 2013;108:11-18.
60. Luo P, Liu Y, Xia Y, Xu H, Xie G. Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens. Bioelectron. 2014;54:217-221.
61. El-Shanshoury AE, Elsilk SE, Ebeid ME. Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079T. Afr J Biotechnol 2012;11(31):7957-7965.
62. Omajali JB, Mikheenko IP, Merroun ML, Wood J, Macaskie LE. Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans. J Nanopart Res. 2015;17(6):1-7.
63. Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P. Bacteria mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol. 2010;1(5):071-079.
64. Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem. 2019;12(8):3576-3600.
65. Srivastava M, Singh J, Mishra RK, Ojha AK. Electro-optical and magnetic properties of monodispersed colloidal Cu2O nanoparticles. J Alloys Compd. 2013;555:123-130.
66. Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci. 2019;1(6):1-30.
67. Rehman S, Jermy BR, Akhtar S, Borgio JF, Abdul Azeez S, Ravinayagam V et al. Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. Artif Cells Nanomed Biotechnol. 2019;47(1):2072-2082.
68. Lateef A, Ojo SA, Oladejo SM. Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Process Biochem. 2016;51(10):1406-1412.
69. Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F. Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: Characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J Biotechnol. 2018 20;270:1-1.
70. Dharmaraj D, Krishnamoorthy M, Rajendran K, Karuppiah K, Annamalai J, Durairaj KR et al. Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. J Drug Deliv Sci Technol. 2021;61:102111.
71. Brahmachari G, Sarkar S, Ghosh R, Barman S, Mandal NC, Jash SK, et al. Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn with enhanced antibacterial activity. Org Med Chem Lett. 2014;4(1):1-0.
72. MARTIN KD, PADILLA KG. Sunlight Mediated Synthesis of Silver Nanoparticles by Bacillus sp and Its Antibacterial Property. Orient J Chem.2020;36:419-424.
73. Arul D, Balasubramani G, Balasubramanian V, Natarajan T, Perumal P. Antibacterial efficacy of silver nanoparticles and ethyl acetate’s metabolites of the potent halophilic (marine) bacterium, Bacillus cereus A30 on multidrug resistant bacteria. Pathog. Glob Health. 2017;111(7):367-82.
74. El-Batal AI, Amin MA, Shehata MM, Hallol MM. Synthesis of silver nanoparticles by Bacillus stearothermophilus using gamma radiation and their antimicrobial activity. World Appl Sci J. 2013;22(1):1-6.
75. Kanakalakshmi A, Janaki V, Shanthi K, Kamala-Kannan S. Biosynthesis of Cr (III) nanoparticles from electroplating wastewater using chromium-resistant Bacillus subtilis and its cytotoxicity and antibacterial activity. Artif Cells Nanomed Biotechnol. 2017;45(7):1304-1309.
76. Rehman S, Jermy BR, Akhtar S, Borgio JF, Abdul Azeez S, Ravinayagam V et al. Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. Artif Cells Nanomed Biotechnol. 2019;47(1):2072-2082.
77. Hollstein M, Alexandrov LB, Wild CP, Ardin M, Zavadil J. Base changes in tumour DNA have the power to reveal the causes and evolution of cancer. Oncogene. 2017;36(2):158-167.
78. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet. 1997;349(9061):1269-7126.
79. Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU et al. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomed. 2016;12(23):3157-3177.
80. Patra CR, Mukherjee S, Kotcherlakota R. Biosynthesized silver nanoparticles: A step forward for cancer theranostics?. Nanomed. 2014;9(10):1445-1448.
81. Lim ZZ, Li JE, Ng CT, Yung LY, Bay BH. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin. 2011;32(8):983-990.
82. Mukherjee S, Patra CR. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale. 2016;8(25):12444-12470.
83. Almalki MA, Khalifa AY. Silver nanoparticles synthesis from Bacillus sp KFU36 and its anticancer effect in breast cancer MCF-7 cells via induction of apoptotic mechanism. J Photochem Photobiol B, Biol. 2020;204:111786.
84. Samuel MS, Jose S, Selvarajan E, Mathimani T, Pugazhendhi A. Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. J Photochem Photobiol B, Biol. 2020;202:111642.
85. Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F. Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: Characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J Biotechnol. 2018;270:1-1.
86. Alhussaen K, Hussein EI, Al-Batayneh KM, Al-Khatib M, Al-Khateeb W, Jacob JH, Shatnawi MA, Khashroum A, Hegazy MI. Identification and controlling Pythium sp. infecting tomato seedlings cultivated in Jordan Valley using garlic extract. Asian. J Plant Pathol. 2011;5(2):84-92.
87. Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. Metal nanoparticles: The protective nanoshield against virus infection. Crit Rev Microbiol. 2016;42(1):46-56.
88. Khandelwal N, Kaur G, Kumar N, Tiwari A. Application of silver nanoparticles in viral inhibition: a new hope for antivirals. Dig J Nanomater Biostructures. 2014;9(1).
89. Elbeshehy EK, Elazzazy AM, Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol. 2015;6:453.
90. Ravi A, Nandayipurath VV, Rajan S, Salim SA, Khalid NK, Aravindakumar CT et al. Effect of zinc oxide nanoparticle supplementation on the enhanced production of surfactin and iturin lipopeptides of endophytic Bacillus sp. Fcl1 and its ameliorated antifungal activity. Pest Manag Sci. 2021;77(2):1035-1041.
91. Fouad H, Hongjie L, Yanmei D, Baoting Y, El-Shakh A, Abbas G et al. Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity. Artif Cells Nanomed Biotechnol. 2017;45(7):1369-1378.
92. Lateef A, Ojo SA, Akinwale AS, Azeez L, Gueguim-Kana EB, Beukes LS. Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: Antimicrobial, free radical scavenging and larvicidal activities. Biologia. 2015;70(10):1295-1306.