Preparation of demineralized bone matrix nanoparticles as new drug delivery system and evaluation their toxicity on chicken embryo and Wharton’s jelly mesenchymal stem cells

Document Type : Research Paper


1 College of Pharmacy, University of Al-Ameed, PO Box 198, Karbala, Iraq

2 College of Nursing, University of Al-Ameed, Karbala, Iraq

3 Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran

4 Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran


Objective(s): Demineralized bone matrix (DBM) is an allograft bone composed of native insoluble bone morphogenetic proteins and plays important roles in skeletal development, osteogenesis, and differentiation of mesenchymal stem cells. The osteoinductive capabilities of Allogenic DBM make it a potential drug delivery system for preventive treatment in various anatomical sites. In this study, the cytotoxic and teratogenic effects of DBM nanoparticles, on Wharton’s jelly mesenchymal stem cells and chicken embryos were evaluated. 
Materials and Methods: DBM nanoparticles were injected into fertile eggs at doses of 10, 20, 40, 80, and 100 µM / egg. Then morphological, histological, and skeletal malformations were evaluated. Cytotoxic effects of DBM nanoparticles on Wharton’s jelly mesenchymal stem cells were also assessed using MTT test.
Results: Results showed that the fetal growth abnormality occurred only in embryos treated at the highest dose tested (i.e., 100 µM / egg) and MTT test showed no cytotoxicity in low concentration. 
Conclusion: These results indicated that nanoparticles do not have significant toxic effects on chick embryos and cultured stem cells. Only high doses of DBM nanoparticles reduce growth in embryos and cultured cells. 


1.    Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671-1681.
2.    Lin W. Introduction: Nanoparticles in medicine. ACS Publications; 2015;10407-10409.
3.    Haase A, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, et al, Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. J Phys. 2011;10(6):221-225.
4.    Pietroiusti A, Stockmann‐Juvala H, Lucaroni F, Savolainen K. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip Rev Nanomed. 2018;10(5):1513-1521.
5.    Patel S, Jana S, Chetty R, Thakore S, Singh M, Devkar R. Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo. Drug Chem Toxicol. 2019;42(1):1-8.
6.    Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. 2016;20(1):1-11.
7.    Li X, Jin L, Balian G, Laurencin CT, Anderson DG. Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering. Biomaterials. 2006; 27(11):2426-2433.
8.    Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 2013;16(8):32-39.
9.    Iwata H, Ono S, Sato K, Sato T, Kawamura M. Bone morphogenetic protein-induced muscle-and synovium-derived cartilage differentiation in vitro. Clin Orthop Relat Res. 1993;296:295-300.
10.    Drosos GI, Touzopoulos P, Ververidis A, Tilkeridis K, Kazakos K. Use of demineralized bone matrix in the extremities. World J Orthop. 2015;6(2):269-278.
11.    Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10: 1-22.
12.    Ghayour MB, Abdolmaleki A, Fereidoni M. Use of stem cells in the regeneration of peripheral nerve injuries: an overview. Neuro J Shef Kha. 2015;3(1):84-98.
13.    Hadryś A, Sochanik A, McFadden G, Jazowiecka-Rakus J. Mesenchymal stem cells as carriers for systemic delivery of oncolytic viruses. Eur J Pharmacol. 2020;874:172991-173010.
14.    Abdolmaleki A, Zahri S. Comparison of toxicity and teratogenic effects of salen and vo-salen on chicken embryo. Drug Chem Toxicol. 2016;39(3):344-349.
15.    Stern CD. The chick embryo-past, present and future as a model system in developmental biology. Mech Dev. 2004; 121:1011-1013.
16.    Vergara MN, Canto-Soler MV. Rediscovering the chick embryo as a model to study retinal development. Neural Dev. 2012;7:1-19.
17.    Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, et al. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Sci Rep. 2020;10(1):4290-4299.
18.    Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev. 2012;64(12):1063-1077.
19.    Urist MR. Bone: formation by autoinduction. Science. 1965;150(36):893-899.
20.    Abdolmaleki A, Zahri S, Bezaatpour A. Teratogenic and cytotoxic effects of VOsalen complex on chicken embryos, hepatic and fibroblastic-cell cultures. Tehran Univ Med J. 2013;71(1):90-99.
21.    Abdolmaleki A, Ghayour M-B, Zahri S, Asadi A, Behnam-Rassouli M. Preparation of acellular sciatic nerve scaffold and it’s mechanical and histological properties for use in peripheral nerve regeneration. Tehran Univ Med J. 2019; 77(2):115-122.
22.    Abbaszadeh S, Asadi A, Zahri S, Abdolmaleki A, Mahmoudi F. Does Phenytoin Have Neuroprotective Role and Affect Biocompatibility of Decellularized Sciatic Nerve Scaffold? GCT. 2021;8(1):101-110.
23.    Liu X, Zheng P, Wang X, Dai G, Cheng H, Zhang Z, et al. A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res Ther. 2014; 5(2):1-9.
24.    Stockert JC, Blázquez-Castro A, Cañete M, Horobin RW, Villanueva Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012;114(8):785-796.
25.    Mohammad-Bagher G, Arash A, Morteza B-R, Naser M-S, Ali M. Synergistic effects of acetyl-l-carnitine and adipose-derived stromal cells on improving regenerative capacity of acellular nerve allograft in sciatic nerve defect. J Pharmacol Exp Ther. 2019;368(3):490-502.
26.    Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88(1): 49-92.
27.    Abdolmaleki A, Asadi A, Gurushankar K, Shayan TK, Sarvestani FA. Importance of nano medicine and new drug therapies for cancer. Adv Pharm Bull. 2021;11(3):450-459.
28.    Kulkarni A, Patil SA, Badami PS. Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La (III), Th (IV) and VO (IV) complexes with Schiff bases of coumarin derivatives. Eur J Med Chem. 2009;44(7):2904-2912.
29.    Asadi A, Abdolmaleki A. Toxicity and teratogenic effects of zinc sulfide nanoparticles on chick embryo and chick fibroblast cell culture. Intern Med Today. 2019;25(4):270-281.
30.    Xu Z, Feng Q, Wang M, Zhao H, Lin Y, Zhou S. Green biosynthesized silver nanoparticles with aqueous extracts of ginkgo biloba induce apoptosis via mitochondrial pathway in cervical cancer cells. Front Oncol. 2020;10: 575-585.
31.    Khan MJ, Ahmad A, Khan MA, Siddiqui S. Zinc oxide nanoparticle induces apoptosis in human epidermoid carcinoma cells through reactive oxygen species and DNA degradation. Biol Trace Elem Res. 2021;199:2172-2181.
32.    Asadi A, Abdolmaleki A, Najafi F. Study of teratogenic and cytotoxic effects of bdp18 tri-block copolymer (PLA-pEG2000-pLA) on chicken embryos. JArUMS. 2013;13(1): 16-23.
33.    Gao C, Gong W, Yang M, Chu X, Wang Y, Li Z, et al. T807-modified human serum albumin biomimetic nanoparticles for targeted drug delivery across the blood–brain barrier. J Drug Target. 2020;28(10):1085-1095.
34.    Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdörster G, McGrath JL. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials. 2009;30(4):603-610.
35.    Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7): 2780-2799.
36.    Yuan B, Wang Z, Zhao Y, Tang Y, Zhou S, Sun Y, et al. In vitro and In vivo Study of a Novel Nanoscale Demineralized Bone Matrix Coated PCL/β-TCP Scaffold for Bone Regeneration. Macromol Biosci. 2021; 21(3):236-242.
37.    Chen I-C, Su C-Y, Lai C-C, Tsou Y-S, Zheng Y, Fang H-W. Preparation and characterization of moldable demineralized bone matrix/calcium sulfate composite bone graft materials. J Funct Biomater. 2021;12(4):56-62.
38.    Zhang Y, Wang J, Ma Y, Niu X, Liu J, Gao L, et al. Preparation and biocompatibility of demineralized bone matrix/sodium alginate putty. Cell Tissue Bank. 2017;18(2):205-216.