Nanotechnology serves the advancement of microbiology: Diagnostic and therapeutic advantages

Document Type : Review Paper


1 Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran

2 Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran


Today, the nanotechnology science is wide and it has entered nearly all scientific fields. One of the most important applications of nanotechnology is in medicine, especially in diagnosis of microbes (such as bacteria, fungi and viruses) and treatment of the infections caused by them. Yearly, the microbial infections lead to many medical problems such as increased duration of treatment, increased expenses of treatment, drag resistances, and even increased mortality. Since many years ago, antibiotics have been used in treatment of various infections, but unfortunately, their side effects as well as the resistance to them have always been the key problems. Thus, selection of the most suitable detection methods as well as the most appropriate treatment options for various microbial infections may reduce the crisis. It seems that nanotechnology approaches may efficiently help to diagnose many different microbial infections as well as to combat them, particularly the resistant ones, with no side effects currently caused by the traditional antibiotics.


1.    Hulla J, Sahu S,  Hayes A. Nanotechnology: History and future. Hum Exp Toxicol. 2015; 34(12):1318-1321.
2.    Whatmore RW. Nanotechnology—what is it? Should we be worried? Occup Med. 2006; 56(5):295-299.
3.    Allsopp M, Walters A,  Santillo D. Nanotechnologies and nanomaterials in electrical and electronic goods: A review of uses and health concerns. Greenpeace Research Laboratories, London. 2007.
4.    Kumarasmy Y,  Scholar P, editors. The applications of nanotechnology in mechanical engineering. International Conference on Modeling & Simulation (ICMS’15); 2015.
5.    Prasad R, Bhattacharyya A,  Nguyen QD. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol. 2017; 8:1014.
6.    Srinivasan K, Rajanikumar K, Bhardwaj S, Lalitha Kumari B,  Chavali M. Nanotechnology trends in fashion and textile engineering. Curr Trends Fash technol Text Eng. 2018; 2(3):56-59.
7.    Whitesides GM. Nanosci Nanotech Chem. Small. 2005; 1(2):172-179.
8.    Wu J,  Li Z. Applications of nanotechnology in biomedicine. Springer Berlin Heidelberg; 2013.
9.    Ball AS, Patil S,  Soni S. Introduction into nanotechnology and microbiology.  Methods in microbiology. 46: Elsevier; 2019. p. 1-18.
10.    Doron S,  Gorbach S. Bacterial infections: overview. International Encyclopedia of Public Health. 2008; 273.
11.    Qasim M, Lim D-J, Park H,  Na D. Nanotechnology for diagnosis and treatment of infectious diseases. J Nanosci Nanotechnol. 2014; 14(10):7374-7387.
12.    Rai M,  Kon K. Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases: Academic Press; 2015.
13.    Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, et al. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front Microbiol. 2018; 9:1441.
14.    Grasso G, Zane D,  Dragone R. Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials. 2019; 10(1):11.
15.    Singh R, Smitha M,  Singh SP. The role of nanotechnology in combating multi-drug resistant bacteria. J  Nanosci Nanotech. 2014; 14(7):4745-4756.
16.    Campos EV, Pereira AE, De Oliveira JL, Carvalho LB, Guilger-Casagrande M, De Lima R, et al. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotech. 2020; 18(1):1-23.
17.    Zhou J, Krishnan N, Jiang Y, Fang RH,  Zhang L. Nanotechnology for virus treatment. Nano Today. 2021; 36:101031.
18.    Rai M, Ingle A, Pandit R, Paralikar P, Gupta I, Anasane N, et al. Nanotechnology for the treatment of fungal infections on human skin.  The microbiology of skin, soft tissue, bone and joint infections: Elsevier; 2017. p. 169-184.
19.    Voltan AR, Quindos G, Alarcón KPM, Fusco-Almeida AM, Mendes-Giannini MJS,  Chorilli M. Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy? Int J Nanotechnol Nanomed. 2016; 11(3715.
20.    Su Y, Liu C, Fang H,  Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact. 2020; 19(1):1-12.
21.    Boettcher C, Kell H, Holzwarth JF,  Vater J. Flexible loops of thread-like micelles are formed upon interaction of L-α-dimyristoyl-phosphatidylcholine with the biosurfactant surfactin as revealed by cryo-electron tomography. Biophys Chem. 2010; 149(1-2):22-27.
22.    Das P, Mukherjee S,  Sen R. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol. 2008; 104(6):1675-1684.
23.    Wu Y-S, Ngai S-C, Goh B-H, Chan K-G, Lee L-H,  Chuah L-H. Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Front Pharmacol. 2017; 8:761.
24.    Zhang Y, Liu C, Dong B, Ma X, Hou L, Cao X, et al. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation. 2015; 38(2):756-764.
25.    Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol. 2016; 299:78-89.
26.    El-Sayed A,  Kamel M. Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environ Sci Pollut Res. 2020; 27(16):19200-19213.
27.    Mohantya N, Palaib T, Prustyc B,  Mohapatrad J. An overview of nanomedicine in veterinary science. Vet Res. 2014; 2(4):90-95.
28.    Gray NF. The implications of global warming and climate change on waterborne diseases.  Microbiology of waterborne diseases: Elsevier; 2014. p. 653-666.
29.    Kaper JB, Nataro JP,  Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004; 2(2):123-140.
30.    Makvana S,  Krilov LR. Escherichia coli infections. Pediatr Rev. 2015; 36(4):167-170; quiz 171.
31.    El-Shanshoury AE-RR, ElSilk SE,  Ebeid ME. Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. Int Sch Res Notices. 2011; 2011.
32.    Asadi S,  Moeinpour F. Inactivation of Escherichia coli in water by silver-coated Ni0. 5Zn0. 5Fe2O4 magnetic nanocomposite: a Box–Behnken design optimization. Appl Water Sci. 2019; 9(1):1-9.
33.    Fernandes MM, Ivanova K, Francesko A, Rivera D, Torrent-Burgués J, Gedanken A, et al. Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomed Nanotechnol Biol Med. 2016; 12(7):2061-2069.
34.    Basu M, Seggerson S, Henshaw J, Jiang J, del A Cordona R, Lefave C, et al. Nano-biosensor development for bacterial detection during human kidney infection: use of glycoconjugate-specific antibody-bound gold NanoWire arrays (GNWA). Glycoconj J. 2004; 21(8):487-496.
35.    Kumar M,  Das A. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review. Adv Colloid Interface Sci. 2017; 249(53-65.
36.    Bennur T, Kumar AR, Zinjarde S,  Javdekar V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol Res. 2015; 174:33-47.
37.    Ibrahim AH, Desoukey SY, Fouad MA, Kamel MS, Gulder TA,  Abdelmohsen UR. Natural product potential of the genus Nocardiopsis. Mar Drugs. 2018; 16(5):147.
38.    Manivasagan P, Alam MS, Kang K-H, Kwak M,  Kim S-K. Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities. Bioprocess Biosyst Eng. 2015; 38(6):1167-1177.
39.    Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K,  Kim S-K. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Res Int. 2013; 2013.
40.    Dhanaraj S, Thirunavukkarasu S, John HA, Pandian S, Salmen SH, Chinnathambi A, et al. Novel marine Nocardiopsis dassonvillei-DS013 mediated silver nanoparticles characterization and its bactericidal potential against clinical isolates. Saudi J Biol Sci. 2020; 27(3):991-995.
41.    Basatian-Tashkan B, Niakan M, Khaledi M, Afkhami H, Sameni F, Bakhti S, et al. Antibiotic resistance assessment of Acinetobacter baumannii isolates from Tehran hospitals due to the presence of efflux pumps encoding genes (adeA and adeS genes) by molecular method. BMC Res Notes. 2020; 13(1):1-6.
42.    Howard A, O’Donoghue M, Feeney A,  Sleator RD. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence. 2012; 3(3):243-250.
43.    Weinberg S, Villedieu A, Bagdasarian N, Karah N, Teare L,  Elamin W. Control and management of multidrug resistant Acinetobacter baumannii: A review of the evidence and proposal of novel approaches. Infec Prev Practice. 2020; 2(3):100077.
44.    Lee N-Y, Ko W-C,  Hsueh P-R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 2019; 10:1153.
45.    Singh R, Vora J, Nadhe SB, Wadhwani SA, Shedbalkar UU,  Chopade BA. Antibacterial activities of bacteriagenic silver nanoparticles against nosocomial Acinetobacter baumannii. J Nanosci Nanotechnol. 2018; 18(6):3806-3815.
46.    Chen M, Yu X, Huo Q, Yuan Q, Li X, Xu C, et al. Biomedical potentialities of silver nanoparticles for clinical multiple drug-resistant Acinetobacter baumannii. J Nanomater. 2019; 2019:1-7.
47.    Karimipour N,  Tanomand A. Antibacterial Effect of Silver Nanoparticles on Acinetobacter Baumannii. Iran J Public Health. 2014; 43(2):39.
48.    Niakan S, Niakan M, Hesaraki S, Nejadmoghaddam MR, Moradi M, Hanafiabdar M, et al. Comparison of the antibacterial effects of nanosilver with 18 antibiotics on multidrug resistance clinical isolates of Acinetobacter baumannii. Jundishapur J Microbiol. 2013; 6(5).
49.    Cheng X, Yang J, Wang M, Wu P, Du Q, He J, et al. Visual and rapid detection of Acinetobacter baumannii by a multiple cross displacement amplification combined with nanoparticles-based biosensor assay. AMB Express. 2019; 9(1):1-9.
50.    Khalil M, Azzazy HM, Attia A,  Hashem AGM. A sensitive colorimetric assay for identification of A cinetobacter baumannii using unmodified gold nanoparticles. J Appl Microbiol. 2014; 117(2):465-471.
51.    Ashurst JV,  Dawson A. Klebsiella pneumonia: StatPearls Publishing; 2022.
52.    Paczosa MK,  Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016; 80(3):629-661.
53.    Qureshi S. Klebsiella Infections Treatment & Management. Retrieved Nov. 2015; 29:2015.
54.    Malarkodi C, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G,  Annadurai G. Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J Nanostructure Chem. 2013; 3(1):1-7.
55.    Wu G, Ji H, Guo X, Li Y, Ren T, Dong H, et al. Nanoparticle reinforced bacterial outer-membrane vesicles effectively prevent fatal infection of carbapenem-resistant Klebsiella pneumoniae. Nanomedicine. 2020;24:102148.
56.    Chhibber S, Gondil VS, Sharma S, Kumar M, Wangoo N,  Sharma RK. A novel approach for combating Klebsiella pneumoniae biofilm using histidine functionalized silver nanoparticles. Front Microbiol. 2017; 8:104.
57.    Hamida RS, Ali MA, Goda DA, Khalil MI,  Redhwan A. Cytotoxic effect of green silver nanoparticles against ampicillin-resistant Klebsiella pneumoniae. RSC Adv. 2020; 10(36):21136-21146.
58.    Hussein EAM, Mohammad AA-H, Harraz FA,  Ahsan MF. Biologically synthesized silver nanoparticles for enhancing tetracycline activity against staphylococcus aureus and klebsiella pneumoniae. Braz Arch Biol Technol. 2019; 62(
59.    Siddique MH, Aslam B, Imran M, Ashraf A, Nadeem H, Hayat S, et al. Effect of silver nanoparticles on biofilm formation and EPS production of multidrug-resistant Klebsiella pneumoniae. BioMed Res Int. 2020; 2020(
60.    Bassetti M, Vena A, Croxatto A, Righi E,  Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018; 7: 212527.
61.    Davies JC. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev. 2002; 3(2):128-134.
62.    LaBauve AE,  Wargo MJ. Growth and laboratory maintenance of Pseudomonas aeruginosa. Curr Protoc Microbiol. 2012; 25(1):6E. 1.1-6E. 1.8.
63.    Salomoni R, Léo P, Montemor A, Rinaldi B,  Rodrigues M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl. 2017; 10:115.
64.    Singh H, Du J, Singh P,  Yi TH. Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1. 4 and their antimicrobial application. J Pharm Anal. 2018; 8(4):258-264.
65.    Ramasamy M,  Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Res Int. 2016; 2016(
66.    Han C, Romero N, Fischer S, Dookran J, Berger A,  Doiron AL. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol Rev. 2017; 6(5):383-404.
67.    Alhogail S, Suaifan GA, Bikker FJ, Kaman WE, Weber K, Cialla-May D, et al. Rapid colorimetric detection of Pseudomonas aeruginosa in clinical isolates using a magnetic nanoparticle biosensor. ACS Omega. 2019; 4(26):21684-21688.
68.    Elkhawaga AA, Khalifa MM, El-Badawy O, Hassan MA,  El-Said WA. Rapid and highly sensitive detection of pyocyanin biomarker in different Pseudomonas aeruginosa infections using gold nanoparticles modified sensor. PLoS One. 2019; 14(7):e0216438.
69.    Farhangi A, Peymani A,  Ahmadpour-Yazdi H. Design of a gold nanoprobe for the detection of Pseudomonas aeruginosa elastase gene (lasB). RSC Adv. 2020; 10(20):11590-11597.
70.    Khalifa MM, Elkhawaga AA, Hassan MA, Zahran AM, Fathalla AM, El-Said WA, et al. Highly specific Electrochemical Sensing of Pseudomonas aeruginosa in patients suffering from corneal ulcers: A comparative study. Sci Rep. 2019; 9(1):1-12.
71.    Tang Y, Ali Z, Zou J, Jin G, Zhu J, Yang J, et al. Detection methods for Pseudomonas aeruginosa: history and future perspective. RSC Adv. 2017; 7(82):51789-51800.
72.    Ambreen A, Jamil M,  Mustafa T. Viable Mycobacterium tuberculosis in sputum after pulmonary tuberculosis cure. BMC Infect Dis. 2019; 19(1):1-8.
73.    Chai Q, Zhang Y,  Liu CH. Mycobacterium tuberculosis: an adaptable pathogen associated with multiple human diseases. Front Cell Infect Microbiol. 2018; 8:158.
74.    Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol. 2001; 2(8):569-578.
75.    Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003; 16(3):463-496.
76.    Ufimtseva E, Eremeeva N, Vakhrusheva D,  Skornyakov S. Mycobacterium tuberculosis shape and size variations in alveolar macrophages of tuberculosis patients. Eur Respir Soc; 2019.
77.    Nasiruddin M, Neyaz M, Das S. Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat. 2017; 2017:4920209.
78.    Banyal S, Malik P, Tuli HS,  Mukherjee TK. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr Opin Pulm Med. 2013; 19(3):289-297.
79.    Bagchi T,  Chauhan S. Nanotechnology-based approaches for combating tuberculosis: A review. Curr Nanomater. 2018; 3(3):130-139.
80.    Karunaratne RE, Wijenayaka LA, Wijesundera SS, De Silva KN, Adikaram CP,  Perera J. Use of nanotechnology for infectious disease diagnostics: application in drug resistant tuberculosis. BMC Infe Dis. 2019; 19(1):1-9.
81.    Kerry RG, Gouda S, Sil B, Das G, Shin H-S, Ghodake G, et al. Cure of tuberculosis using nanotechnology: an overview. J Microbiol. 2018; 56(5):287-299.
82.    Mathuria JP. Nanoparticles in tuberculosis diagnosis, treatment and prevention: a hope for future. Dig J Nanomater Biostructures. 2009; 4(2).
83.    Buckle GC, Walker CLF,  Black RE. Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. J Glob Health. 2012; 2(1).
84.    Roumagnac P, Weill F-X, Dolecek C, Baker S, Brisse S, Chinh NT, et al. Evolutionary history of Salmonella typhi. Science. 2006; 314(5803):1301-1304.
85.    Abd-Elhakeem MA, Badawy I,  Raafat A. Efficacy of silver nanoparticles as antimicrobial agent against Salmonella infection and accompanied biochemical, immunological and histopathological changes in rats. Egypt J Pure Appl Sci. 2016; 54(2):13-19.
86.    Boatemaa MA, Ragunathan R,  Naskar J. Nanogold for in vitro inhibition of Salmonella strains. J Nanomater. 2019; 2019:1-11.
87.    Inbaraj BS,  Chen B. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal. 2016; 24(1):15-28.
88.    Kim G, Park SB, Moon J-H,  Lee S. Detection of pathogenic Salmonella with nanobiosensors. Anal Methods. 2013; 5(20):5717-5723.
89.    Mitra R. Nanotechnology and the diagnosis of typhoid fever. Dig J Nanomater Biostructures. 2009; 4(1).
90.    Mohammadi G, Valizadeh H, Barzegar-Jalali M, Lotfipour F, Adibkia K, Milani M, et al. Development of azithromycin–PLGA nanoparticles: Physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B: Biointerfaces. 2010; 80(1):34-39.
91.    Nokhodchi A, Ghafourian T,  Mohammadi G. Nanotechnology tools for efficient antibacterial delivery to Salmonella: Intech Publishing Group; 2012; 139-168.
92.    Preechakasedkit P, Pinwattana K, Dungchai W, Siangproh W, Chaicumpa W, Tongtawe P, et al. Development of a one-step immunochromatographic strip test using gold nanoparticles for the rapid detection of Salmonella typhi in human serum. Biosens Bioelectron. 2012; 31(1):562-566.
93.    Sanjay P, Gayithri K, Kumar SN, Krishna V,  Prasad DJ. TiO2-PANI based anti-typhi immobilized nanosensor for salmonella typhi detection. Mater Today Proc. 2016; 3(6):1772-1777.
94.    Jamil RT, Foris LA,  Snowden J. Proteus mirabilis infections: StatPearls; 2022.
95.    Schaffer JN,  Pearson MM. Proteus mirabilis and urinary tract infections: Washington, DC : ASM Press; 2017. 383-433.
96.    Wasfi R, Hamed SM, Amer MA,  Fahmy LI. Proteus mirabilis biofilm: development and therapeutic strategies. Front Cell Infect Microbiol. 2020; 10:414.
97.    Parveen A, Yalagatti MS, Abbaraju V,  Deshpande R. Emphasized mechanistic antimicrobial study of biofunctionalized silver nanoparticles on model Proteus mirabilis. J Drug Deliv. 2018; 2018:3850139.
98.    Chandra H, Singh C, Kumari P, Yadav S, Mishra AP, Laishevtcev A, et al. Promising roles of alternative medicine and plant-based nanotechnology as remedies for urinary tract infections. Molecules. 2020; 25(23):5593.
99.    Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K,  Duhan S. Nanotechnology: The new perspective in precision agriculture. Biotechnol Rep. 2017; 15:11-23.
100.    Iribarnegaray V, Navarro N, Robino L, Zunino P, Morales J,  Scavone P. Magnesium-doped zinc oxide nanoparticles alter biofilm formation of Proteus mirabilis. Nanomedicine. 2019; 14(12):1551-1564.
101.    Saleh TH, Hashim ST, Malik SN,  AL-Rubaii BAL. Down-regulation of flil gene expression by Ag nanoparticles and TiO2 nanoparticles in pragmatic clinical isolates of Proteus mirabilis and Proteus vulgaris from urinary tract infection. Nano Biomed Eng. 2019; 11(4):321-332.
102.    hun Yoon S,  Waters CM. Vibrio cholerae. Trends Microbiol. 2019; 27(9):806-807.
103.    Rodriguez JAO,  Kahwaji CI. Vibrio Cholerae.  StatPearls [Internet]: StatPearls Publishing; 2021.
104.    Herfehdoost GR, Kamali M, Javadi HR, Zolfagary D, Emamgoli A, Choopani A, et al. Rapid detection of Vibrio Cholerae by polymerase chain reaction based on nanotechnology method. J Appl Biotechnol Rep. 2014; 1(2):59-62.
105.    Das S, Angsantikul P, Le C, Bao D, Miyamoto Y, Gao W, et al. Neutralization of cholera toxin with nanoparticle decoys for treatment of cholera. PLoS Negl Trop Dis. 2018; 12(2):e0006266.
106.    Herfehdoost G, Kamali M, Sadri M, Zolfagari D,  Emamgholi A. Nanotechnology is the New Method for Rapid Detection of Vibrio Cholerae. Med J Tabriz Univ Med Sci. 2016; 38(4):30-33.
107.    Thiramanas R, Jangpatarapongsa K, Tangboriboonrat P,  Polpanich D. Detection of Vibrio cholerae using the intrinsic catalytic activity of a magnetic polymeric nanoparticle. Anal Chem. 2013; 85(12):5996-6002.
108.    Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, et al. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol. 2015; 305(1):85-95.
109.    Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM,  Chakrabarti P. The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype. Nanomed Nanotechnol Biol Med. 2016; 12(6):1499-1509.
110.    Siddiqui AH,  Koirala J. Methicillin resistant Staphylococcus aureus.  StatPearls [internet]: StatPearls Publishing; 2021.
111.    Stapleton PD,  Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog. 2002; 85(1):57-72.
112.    Gao Y, Chen Y, Cao Y, Mo A,  Peng Q. Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem. 2021; 213:113056.
113.    Hibbitts A,  O’Leary C. Emerging nanomedicine therapies to counter the rise of methicillin-resistant Staphylococcus aureus. Materials. 2018; 11(2):321.
114.    Labruère R, Sona A,  Turos E. Anti–methicillin-resistant Staphylococcus aureus nanoantibiotics. Front Pharmacol. 2019; 10:1121.
115.    Liu P-F, Lo C-W, Chen C-H, Hsieh M-F,  Huang C-M. Use of nanoparticles as therapy for methicillin-resistant Staphylococcus aureus infections. Curr Drug Metab. 2009; 10(8):875-884.
116.    Rai MK, Deshmukh S, Ingle A,  Gade A. Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. J Appl Microbiol. 2012; 112(5):841-852.
117.    Balcucho J, Narváez DM,  Castro-Mayorga JL. Antimicrobial and biocompatible polycaprolactone and copper oxide nanoparticle wound dressings against methicillin-resistant Staphylococcus aureus. Nanomaterials. 2020; 10(9):1692.
118.    Gill AA, Singh S, Thapliyal N,  Karpoormath R. Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review. Microchimica Acta. 2019; 186(2):1-19.
119.    Mustafa F, Hassan RY,  Andreescu S. Multifunctional nanotechnology-enabled sensors for rapid capture and detection of pathogens. Sensors. 2017; 17(9):2121.
120.    Committee BGA. Human immunodeficiency virus (HIV). Transfusion Medicine and Hemotherapy. 2016; 43(3):203.
121.    Piot P, Bartos M, Ghys PD, Walker N,  Schwartländer B. The global impact of HIV/AIDS. Nature. 2001; 410(6831):968-973.
122.    Ross DA, Dick B, Ferguson J,  Organization WH. Preventing HIV/AIDS in young people: a systematic review of the evidence from developing countries: WHO; 2006.
123.    Sharp PM,  Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011; 1(1):a006841.
124.    Kosaka PM, Pini V, Calleja M,  Tamayo J. Ultrasensitive detection of HIV-1 p24 antigen by a hybrid nanomechanical-optoplasmonic platform with potential for detecting HIV-1 at first week after infection. PLoS One. 2017; 12(2):e0171899.
125.    Ranallo S, Rossetti M, Plaxco KW, Vallée‐Bélisle A,  Ricci F. A modular, DNA‐based beacon for single‐step fluorescence detection of antibodies and other proteins. Angew Chem. 2015; 127(45):13412-13416.
126.    Rodríguez-Lorenzo L, de La Rica R, Álvarez-Puebla RA, Liz-Marzán LM,  Stevens MM. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater. 2012; 11(7):604-607.
127.    Macchione MA, Aristizabal Bedoya D, Figueroa FN, Muñoz-Fernández MÁ,  Strumia MC. Nanosystems applied to HIV infection: prevention and treatments. Int J Mol Sci. 2020; 21(22):8647.
128.    Kumar L, Verma S, Prasad DN, Bhardwaj A, Vaidya B,  Jain AK. Nanotechnology: a magic bullet for HIV AIDS treatment. Artif Cells Nanomed Biotechnol. 2015; 43(2):71-86.
129.    Liu Y,  Chen C. Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev. 2016; 103:76-89.
130.    Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine. 2010; 5(2):269-285.
131.    Mozhgani S-H, Kermani HA, Norouzi M, Arabi M,  Soltani S. Nanotechnology based strategies for HIV-1 and HTLV-1 retroviruses gene detection. Heliyon. 2020; 6(5):e04048.
132.    Saravanan M, Asmalash T, Gebrekidan A, Gebreegziabiher D, Araya T, Hilekiros H, et al. Nano-medicine as a newly emerging approach to combat human immunodeficiency virus (HIV). Pharm Nanotechnol. 2018; 6(1):17-27.
133.    Blut A. Influenza virus. Transfus Med Hemother. 2009; 36(1):32.
134.    Taubenberger JK,  Morens DM. The pathology of influenza virus infections. Annu Rev Pathol. 2008; 3:499.
135.    Vemula SV, Zhao J, Liu J, Wang X, Biswas S,  Hewlett I. Current approaches for diagnosis of influenza virus infections in humans. Viruses. 2016; 8(4):96.
136.    Lauster D, Klenk S, Ludwig K, Nojoumi S, Behren S, Adam L, et al. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat Nanotechnol. 2020; 15(5):373-379.
137.    Chakravarty M,  Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res. 2021; 11(3):748-787.
138.    Kim M-G, Park JY, Shon Y, Kim G, Shim G,  Oh Y-K. Nanotechnology and vaccine development. Asian J Pharm Sci. 2014; 9(5):227-235.
139.    Singh L, Kruger HG, Maguire GE, Govender T,  Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis. 2017; 4(4):105-131.
140.    Vaculovicova M, Michalek P, Krizkova S, Macka M,  Adam V. Nanotechnology-based analytical approaches for detection of viruses. Anal Methods. 2017; 9(16):2375-2391.
141.    Beeching NJ, Fenech M, Houlihan CF. Ebola virus disease. Br Med J. 2014; 349.
142.    Jacob ST, Crozier I, Fischer WA, Hewlett A, Kraft CS, Vega M-AdL, et al. Ebola virus disease. Nat Rev Dis Primers. 2020; 6(1):1-31.
143.    Malvy D, McElroy AK, de Clerck H, Günther S,  van Griensven J. Ebola virus disease. Lancet. 2019; 393(10174):936-948.
144.    Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5(4):536-544.
145.    Murray PR, Rosenthal KS,  Pfaller MA. Medical microbiology E-book: Elsevier Health Sciences; 2020.
146.    Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat Commun. 2021; 12(1):1-9.
147.    Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-273.
148.    Rangayasami A, Kannan K, Murugesan S, Radhika D, Sadasivuni KK, Reddy KR, et al. Influence of nanotechnology to combat against COVID-19 for global health emergency: A review. Sens Intl. 2021; 2:100079.
149.    Vahedifard F,  Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emerg Mater. 2021; 4(1):75-99.
150.    Ahmadi MH. Would the interference phenomenon be applied as an alternative option for prophylaxis against COVID-19? BioImpacts. 2021; 11(3):169-172.
151.    Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D,  Martinez-Chapa SO. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 2020; 14(7):7760-7782.
152.    Editorials N. Nanotechnology versus coronavirus. Nat Nanotechnol. 2020; 15(8):617.
153.    Yang D. Application of nanotechnology in the COVID-19 pandemic. Int J Nanomed. 2021; 16:623.
154.    Berman J,  Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol. 2020; 18(6):319-331.
155.    Grossart H-P, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M,  Rojas-Jimenez K. Fungi in aquatic ecosystems. Nat Rev Microbiol. 2019; 17(6):339-354.
156.    Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019; 97(1):1-136.
157.    Limon JJ, Skalski JH,  Underhill DM. Commensal fungi in health and disease. Cell Host Microbe. 2017; 22(2):156-165.
158.    Guisbiers G, Lara HH, Mendoza-Cruz R, Naranjo G, Vincent BA, Peralta XG, et al. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomed: Nanotechnol Biol Med. 2017; 13(3):1095-1103.
159.    Ingle A, Shende S, Pandit R, Paralikar P, Tikar S, Kon K, et al. Nanotechnological applications for the control of pulmonary infections.  The Microbiology of Respiratory System Infections: Elsevier; 2016. p. 223-235.
160.    Ishida K, Cipriano TF, Rocha GM, Weissmüller G, Gomes F, Miranda K, et al. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz. 2013; 109:220-228.
161.    Mihai Grumezescu A. Essential oils and nanotechnology for combating microbial biofilms. Curr Org Chem. 2013; 17(2):90-96.
162.    Pelgrift RY,  Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013; 65(13-14):1803-1815.
163.    Pla L, Aviñó A, Eritja R, Ruiz-Gaitán A, Pemán J, Friaza V, et al. Triplex Hybridization-Based Nanosystem for the Rapid Screening of Pneumocystis Pneumonia in Clinical Samples. J Fungi. 2020; 6(4):292.
164.    Qasim M, Singh BR, Naqvi A, Paik P,  Das D. Silver nanoparticles embedded mesoporous SiO2 nanosphere: an effective anticandidal agent against Candida albicans 077. Nanotechnology. 2015; 26(28):285102.
165.    Spadari CdC, Wirth F, Lopes LB,  Ishida K. New approaches for cryptococcosis treatment. Microorganisms. 2020; 8(4):613.
166.    Tomás AL, de Almeida MP, Cardoso F, Pinto M, Pereira E, Franco R, et al. Development of a gold nanoparticle-based lateral-flow immunoassay for pneumocystis pneumonia serological diagnosis at point-of-care. Front Microbiol. 2019; 10:2917.
167.    Zaioncz S, Maissar Khalil N,  Mara Mainardes R. Exploring the role of nanoparticles in amphotericin B delivery. Curr Pharm Des. 2017; 23(3):509-521.
168.    Fatoni A, Paramita AC, Untari B,  Hidayati N. Chitosan-CuO Nanoparticles as Antibacterial Shigella dysenteriae: Synthesis, Characterization, and In Vitro Study. J Kim Sains Apl. 2020; 23(12):432-439.
169.    Chen X, Zhou Q, Wu X, Wang S, Liu R, Dong S, et al. Visual and Rapid Diagnosis of Neisseria gonorrhoeae Using Loop-Mediated Isothermal Amplification Combined With a Polymer Nanoparticle–Based Biosensor in Clinical Application. Front Mol Biosci. 2021; 651.
170.    Ribeiro LNdM, De Paula E, Rossi DA, Martins FA, de Melo RT, Monteiro GP, et al. Nanocarriers from natural lipids with in vitro activity against Campylobacter jejuni. Front Cell Infect Microbiol. 2021; 10:571040.
171.    Granato M. Nanotechnology Frontiers in γ-Herpesviruses Treatments. Int J Mol Sci. 2021; 22(21):11407.
172.    Pan L, Li B, Chen J, Zhang H, Wang X, Shou J, et al. Nanotechnology-based Weapons to Combat Human Papillomavirus (HPV) Infection Associated Diseases. Front Chem. 2021; 1028.
173.    Arca-Lafuente S, Martínez-Román P, Mate-Cano I, Madrid R,  Briz V. Nanotechnology: A reality for diagnosis of HCV infectious disease. J Infect. 2020; 80(1):8-15.
174.    Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR,  Taborda CP. Therapies and vaccines based on nanoparticles for the treatment of systemic fungal infections. Front Cell Infect Microbiol. 2020;10:463.
175.    Ferreira I, Ferreira-Strixino J, Castilho ML, Campos CB, Tellez C,  Raniero L. Characterization of Paracoccidioides brasiliensis by FT-IR spectroscopy and nanotechnology. Spectrochim Acta A Mol Biomol Spectrosc. 2016; 152:397-403.
176.    Ahmadi MH. Global status of tetracycline resistance among clinical isolates of Vibrio cholerae: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2021; 10(1):1-12.
177.    Khaledi M, Afkhami H, Atani ZR, Sepehrnia S, Atani FR,  Ahmadi MH. Novel Perspective for Treatment of Mycoplasma Infections: A Promising Future. Int J Pept Res Ther. 2022; 28(1):1-11.