1. Litman T, Druley TE, Stein WD, Bates SE. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci. 2001;58(7):931-959.
2. Sadeghi M, Kashanian S, Naghib SM, Askari E, Haghiralsadat F, Tofighi D. A highly sensitive nanobiosensor based on aptamer-conjugated graphene-decorated rhodium nanoparticles for detection of HER2-positive circulating tumor cells. Nano Rev. 2022;11(1):793-810.
3. Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm. 2021;604:120733.
4. Varon LAB, Orlande HRB, Eliçabe GE. Combined parameter and state estimation problem in a complex domain: RF hyperthermia treatment using nanoparticles. J Phys Conf Ser. 2016;745(3):032014.
5. Motlagh NSH, Parvin P, Mirzaie ZH, Karimi R, Sanderson JH, Atyabi F. Synergistic performance of triggered drug release and photothermal therapy of MCF7 cells based on laser activated PEGylated GO + DOX. Biomed Opt Express. 2020;11(7):3783-3794.
6. You J, Zhang R, Xiong C, Zhong M, Melancon M, Gupta S, et al. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 2012;72(18):4777-4786.
7. Wu H, Lu C, Chen M. Evaluation of minimally invasive laser ablation in children with osteoid osteoma. Oncol Lett. 2017;13(1):155-158.
8. Rashidi A, Omidi M, Choolaei M, Nazarzadeh M, Yadegari A, Haghierosadat F, et al. Electromechanical properties of vertically aligned carbon nanotube. Adv Mater Res. 2013;705:332-346.
9. Wood AK, Sehgal CM. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med Biol. 2015;41(4):905-928.
10. Tu X, Ma Y, Cao Y, Huang J, Zhang M, Zhang Z. PEGylated carbon nanoparticles for efficient in vitro photothermal cancer therapy. J Mater Chem B. 2014;2(15):2184-2192.
11. Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J Control Release. 2021;333: 391-417.
12. Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IR. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med. 2012;31(4):623-634.
13. Yoshizawa S, Takagi R, Umemura S-i. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation. Appl Sci. 2017;7(3):288.
14. Shanei A, Tavakoli MB, Salehi H, Ebrahimi-Fard A. Evaluating the effects of ultrasound waves on MCF-7 cells in the presence of ag nanoparticles. J Isfahan Med Sch. 2016;34(389):763-768.
15. Legay M, Gondrexon N, Le Person S, Boldo P, Bontemps A. Enhancement of heat transfer by ultrasound: review and recent advances. Int J Chem Eng. 2011;2011:670108.
16. Li JL, Hou XL, Bao HC, Sun L, Tang B, Wang JF, et al. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. J Biomed Mater Res A. 2014;102(7):2181-2188.
17. Johari P, Shenoy VB. Modulating Optical Properties of Graphene Oxide: Role of Prominent Functional Groups. ACS Nano. 2011;5(9):7640-7647.
18. Omidi M, Malakoutian M, Choolaei M, Oroojalian F, Haghiralsadat F, Yazdian F. A Label-Free detection of biomolecules using micromechanical biosensors. Chin Phys Lett. 2013;30(6):068701.
19. Karimi MA, Dadmehr M, Hosseini M, Korouzhdehi B, Oroojalian F. Sensitive detection of methylated DNA and methyltransferase activity based on the lighting up of FAM-labeled DNA quenched fluorescence by gold nanoparticles. RSC advances. 2019;9(21):12063-12069.
20. Yaghoubi F, Naghib SM, Motlagh NSH, Haghiralsadat F, Jaliani HZ, Tofighi D, et al. Multiresponsive carboxylated graphene oxide-grafted aptamer as a multifunctional nanocarrier for targeted delivery of chemotherapeutics and bioactive compounds in cancer therapy. Nano Rev. 2021;10(1):1838-1852.
21. Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10(9):3318-3323.
22. Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, et al. Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy. J Am Chem Soc. 2011;133(17):6825-6831.
23. Matteini P, Tatini F, Cavigli L, Ottaviano S, Ghini G, Pini R. Graphene as a photothermal switch for controlled drug release. Nanoscale. 2014;6(14):7947-7953.
24. Marchal C, Bey P, Metz R, Gaulard ML, Robert J. Treatment of superficial human cancerous nodules by local ultrasound hyperthermia. Br J Cancer Suppl. 1982;5:243-245.
25. Gelet A, Chapelon JY, Bouvier R, Pangaud C, Lasne Y. Local control of prostate cancer by transrectal high intensity focused ultrasound therapy: preliminary results. J Urol. 1999;161(1):156-162.
26. Kaczmarek K, Hornowski T, Dobosz B, Józefczak A. Influence of Magnetic Nanoparticles on the Focused Ultrasound Hyperthermia. Materials (Basel). 2018;11(9). Epub 20180904.
27. Beik J, Abed Z, Shakeri-Zadeh A, Nourbakhsh M, Shiran MB. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Phys E: Low-Dimens Syst Nanostructures. 2016;81:308-314.
28. Rahimizadeh M, Eshghi H, Shiri A, Ghadamyari Z, Matin MM, Oroojalian F, et al. Fe (HSO 4) 3 as an efficient catalyst for diazotization and diazo coupling reactions. J Korean Chem Soc. 2012;56(6):716-719.
29. Chen Y-W, Liu T-Y, Chang P-H, Hsu P-H, Liu H-L, Lin H-C, et al. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale. 2016;8(25):12648-12657.
30. yaghoubi f, Hosseini Motlagh NS, moradi a, Haghiralsadat f. Carboxylated Graphene Oxide as a Nanocarrier for Drug Delivery of Quercetin as an Effective Anticancer Agent Iran Biomed J. 2022;26(4):324-329.
31. Nia AH, Behnam B, Taghavi S, Oroojalian F, Eshghi H, Shier WT, et al. Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube–succinate–polyethylenimine conjugates as non-viral gene carriers. Med Chem Comm. 2017;8(2):364-375.
32. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876-10877.
33. Shang J, Ma L, Li J, Ai W, Yu T, Gurzadyan GG. Femtosecond pump–probe spectroscopy of graphene oxide in water. J Phys D: Appl Physics. 2014;47(9):094008.
34. Liaros N, Aloukos P, Kolokithas-Ntoukas A, Bakandritsos A, Szabo T, Zboril R, et al. Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids. J Phys Chem C. 2013;117(13):6842-6850.
35. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J Phys Chem B. 2006;110(17):8535-8539.
36. Fatemi Bushehri SMM, Zarchi MS. An expert model for self-care problems classification using probabilistic neural network and feature selection approach. Appl Soft Comput. 2019;82:105545.
37. Sordillo LA, Pu Y, Pratavieira S, Budansky Y, Alfano RR. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J Biomed Opt. 2014;19(5):056004.