Fisetin-metformin co-loaded in mesoporous silica nanoparticles (MSNs) inhibited triple negative breast cancer proliferation

Document Type : Research Paper

Authors

1 Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran

2 Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran

3 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran

Abstract

Objective(s): Herbal compounds with cytotoxicity have been of great interest in recent years to improve cancer treatment methods. Fisetin is an anti-cancer herbal compound with low solubility in aqueous systems. Metformin is another compound with anti-cancer effects. In this study, the combined effect of fisetin and metformin was investigated using mesoporous silica nanoparticles (MSNs) in breast cancer cell lines. 
Materials and Methods: After the synthesis of nanoparticles, they were characterized using XRD, TEM, SEM. The DLS test showed a size of 143.4 nm with zeta-potential -39.1 mV. Fisetin and metformin were loaded into nanoparticles and loading was confirmed by FTIR. The toxicity of different concentrations of free drug (metformin, fisetin, fisetin-metformin) and Nanoformulations (metformin, fisetin and nano-fisetin-metformin) was investigated on two breast cancer lines MCF7 and MDA-MB-231. 
Results: Fisetin-metformin co-loaded in MSNs showed the highest cytotoxicity among all formulations in both cell lines. The inhibition of colony formation and migration rate was effectively observed in the co-treatment of cells with fisetin and metformin loaded in nanoparticles compared to single treatments. The expression of tumor suppressor miR-200b-3p and miR-34a-5p showed that fisetin increased the expression of these tumor suppressors compared to the control. 
Conclusion: The anti-cancer effect of fisetin-metformin in combination increased the expression of tumor suppressors due to the regulation of a wide range of gene network involving in cancer progress. The obtained results highlight the use of MSN as an effective drug delivery system for simultaneous delivery of herbal cytotoxic compounds in cancer.

Keywords


1.    Wang Y, Zhang T, Kwiatkowski N, Abraham BJ, Lee TI, Xie S, et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell. 2015;163(1):174-186.
2.    Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, McCue P, et al. Differences in breast carcinoma characteristics in newly diagnosed African–American and Caucasian patients: A single‐institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and end results database. Cancer. 2007;110(4):876-884.
3.    Liu W, Zhu Y, Wang F, Li X, Liu X, Pang J, et al. Galactosylated chitosan-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. R Soc Open Sci. 2018;5(12):181027.
4.    Soheili N, Eshghi M, Emadi-Baygi M, Mirzaei SA, Heidari R, Hosseinzadeh M. Design and evaluation of biological gate circuits and their therapeutic applications in a model of multidrug resistant cancers. Biotechnol Lett. 2020;42:1419-1429.
5.    Azadmehr A, Hajiaghaee R, Afshari A, Amirghofran Z, Refieian-Kopaei M, Yousofi Darani H, et al. Evaluation of in vivo immune response activity and in vitro anti-cancer effect by Scrophularia megalantha. J Med Plant Res. 2011;5(11):2365-2368.
6.    Qi F, Li A, Inagaki Y, Gao J, Li J, Kokudo N, et al. Chinese herbal medicines as adjuvant treatment during chemoor radio-therapy for cancer. Biosci Trends. 2010;4(6):297-307.
7.    Hu C-MJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1104-1111.
8.    LoRusso PM, Canetta R, Wagner JA, Balogh EP, Nass SJ, Boerner SA, et al. Accelerating cancer therapy development: the importance of combination strategies and collaboration. Summary of an Institute of Medicine workshop. Clin Cancer Res. 2012;18(22):6101-6109.
9.    Li X, Takashima M, Yuba E, Harada A, Kono K. PEGylated PAMAM dendrimer–doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy. Biomater. 2014;35(24):6576-6584.
10.    Kim J, Kim J, Jeong C, Kim WJ. Synergistic nanomedicine by combined gene and photothermal therapy. Adv Drug Deliv Rev. 2016;98:99-112.
11.    Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary antioxidant for health promotion. ARS. 2013;19(2):151-162.
12.    Bhat TA, Nambiar D, Pal A, Agarwal R, Singh RP. Fisetin inhibits various attributes of angiogenesis in vitro and in vivo—implications for angioprevention. Carcinog. 2012;33(2):385-393.
13.    Li J, Cheng Y, Qu W, Sun Y, Wang Z, Wang H, et al. Fisetin, a dietary flavonoid, induces cell cycle arrest and apoptosis through activation of p53 and inhibition of NF‐kappa B pathways in bladder cancer cells. Basic Clin Pharmacol Toxicol. 2011;108(2):84-93.
14.    Khan MI, Adhami VM, Lall RK, Sechi M, Joshi DC, Haidar OM, et al. YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin. Oncotarget. 2014;5(9):2462.
15.    Syed DN, Chamcheu J-C, Khan MI, Sechi M, Lall RK, Adhami VM, et al. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling. Biochem Pharmacol. 2014;89(3):349-360.
16.    Maurya BK, Trigun SK. Fisetin attenuates AKT associated growth promoting events in aflatoxinb1 induced hepatocellular carcinoma. Anti-Cancer Agents Med Chem. 2018;18(13):1885-1891.
17.    Khan N, Afaq F, Khusro FH, Mustafa Adhami V, Suh Y, Mukhtar H. Dual inhibition of phosphatidylinositol 3‐kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int J Cancer. 2012;130(7):1695-1705.
18.    Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69(19):7507-7511.
19.    Ugwueze CV, Ogamba OJ, Young EE, Onyenekwe BM, Ezeokpo BC. Metformin: A possible option in cancer chemotherapy. Anal Cell Pathol. 2020;2020:1-10.
20.    Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE, et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell cycle. 2009;8(6):909-915.
21.    Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol. 2018;46(sup2):295-305.
22.    Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):1-12.
23.    Liu X, Situ A, Kang Y, Villabroza KR, Liao Y, Chang CH, et al. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS nano. 2016;10(2):2702-2715.
24.    Castillo RR, Colilla M, Vallet-Regí M. Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin Drug Deliv. 2017;14(2):229-243.
25.    Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185-1198.
26.    Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, et al. Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules. 2019;9(5):174.
27.    Imran M, Saeed F, Gilani SA, Shariati MA, Imran A, Afzaal M, et al. Fisetin: An anticancer perspective. Food Sci Nutr. 2021;9(1):3-16.
28.    Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R, et al. Circulating microRNAs in cancer: potential and challenge. Front Genet. 2019;10:626.
29.    Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723.
30.    Wu S-H, Mou C-Y, Lin H-P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews. 2013;42(9):3862-3875.
31.    Shi Y, Wan A, Shi Y, Zhang Y, Chen Y. Experimental and mathematical studies on the drug release properties of aspirin loaded chitosan nanoparticles. Biomed Res Int. 2014;2014:1-8.
32.    Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: challenges and opportunities. J Control Release. 2013;170(1):15-40.
33.    Mohammed MA, Syeda J, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharm. 2017;9(4):53.
34.    Kang X, Chen H, Li S, Jie L, Hu J, Wang X, et al. Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids Surf B. 2018;161:597-605.
35.    Falah RR, Talib WH, Shbailat SJ. Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis. Ther Adv Med Oncol. 2017;9(4):235-252.
36.    Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, Javidfar S, Lotfi-Attari J, Sadeghzadeh H, et al. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif Cells Nanomed Biotechnol. 2018;46(5):917-925.
37.    Zheng Z, Zhu W, Yang B, Chai R, Liu T, Li F, et al. The co‑treatment of metformin with flavone synergistically induces apoptosis through inhibition of PI3K/AKT pathway in breast cancer cells. Oncol Lett. 2018;15(4):5952-5958.
38.    Rasouli S, Zarghami N. Synergistic growth inhibitory effects of chrysin and metformin combination on breast cancer cells through hTERT and cyclin D1 suppression. Asian Pac J Cancer Prev. 2018;19(4):977:977-982.
39.    Mdkhana B, Zaher DM, Abdin SM, Omar HA. Tangeretin boosts the anticancer activity of metformin in breast cancer cells via curbing the energy production. Phytomedicine. 2021;83:153470.
40.    Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomater. 2017;7(7):189.
41.    Saini K, Prabhuraj R, Bandyopadhyaya R. Development of mesoporous silica nanoparticles of tunable pore diameter for superior gemcitabine drug delivery in pancreatic cancer cells. J Nanosci Nanotechnol. 2020;20(5):3084-3096.
42.    Zheng Q, Cui X, Zhang D, Yang Y, Yan X, Liu M, et al. miR-200b inhibits proliferation and metastasis of breast cancer by targeting fucosyltransferase IV and α1, 3-fucosylated glycans. Oncogenesis. 2017;6(7):e358.
43.    Li L, Yuan L, Luo J, Gao J, Guo J, Xie X. MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin Exp Med. 2013;13(2):109-117.
44.    Hong H, Yu H, Yuan J, Guo C, Cao H, Li W, et al. MicroRNA-200b impacts breast cancer cell migration and invasion by regulating Ezrin-Radixin-Moesin. Med Sci Monit. 2016;22:1946.
45.    Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17(2):193-199.