Recent advances of carbon quantum dots in tumor imaging

Document Type : Review Paper


Department of Chemistry, Amirkabir University of Technology, Tehran, Iran


Currently, there is a significant  interest among individuals in the field of bioimaging and detection. Nanostructure-based biosensors have emerged as a superior method for detecting substances due to their unique properties, which enable them to efficiently locate minute quantities of substances.  Carbon quantum dots (CQDs) outperform conventional quantum dots due to their solubility, reduced toxicity, and simplified production process. These attributes make CQDs highly valuable and hold immense potential for medical applications. CQDs are extremely small structures, measuring less than 10 nm in all dimensions. These materials possess exceptional characteristics, such as compatibility with living tissues and the ability to emit light, making them ideal for medical imaging purposes. This review explores the recent advancements in bioimaging utilizing CQDs, delving into their properties, challenges, and future possibilities for further study. As a result, CQDs have gained popularity as a viable option for various medical applications, including drug delivery, gene therapy, light-responsive substances, and antibacterial agents. The review also discusses ongoing efforts to enhance these nanomaterials for improved imaging within the body, efficient drug delivery, and cancer treatment. In summary, this article investigates the latest progress in bioimaging using CQDs and presents insights into surface modification, characteristics, obstacles, and future prospects. Consequently, CQDs have garnered significant attention in diverse bio applications, ranging from nanosystems to brain tumor treatment and bioimaging.


1. Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15:235.
2. Lee JS, Youn YH, Kwon IK, Ko NR. Recent advances in quantum dots for biomedical applications. J Pharm Investig. 2018;48(2):209-214.
3. Biswas MC, Islam MT, Nandy PK, Hossain MM. Graphene quantum dots (GQDs) for bioimaging and drug delivery applications: A review. ACS Mater Lett. 2021;3(6):889-911.
4. Vedhanayagam M, Raja IS, Molkenova A, Atabaev TS, Sreeram KJ, Han DW. Carbon dots-mediated fluorescent scaffolds: Recent trends in image-guided tissue engineering applications. Int J Mol Sci. 2021;22(10):5378.
5. Facure MHM, Schneider R, Mercante LA, Correa DS. A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environ Sci Nano. 2020;7(12):3710-3734.
6. Chen W, Lv G, Hu W, Li D, Chen S, Dai Z. Synthesis and applications of graphene quantum dots: a review. Nanotechnol Rev. 2018;7(2):157-185.
7. Chen F, Gao W, Qiu X, Zhang H, Liu L, Liao P, Fu W, Luo Y. Graphene quantum dots in biomedical applications: Recent advances and future challenges. Front Lab Med. 2017;1(4):192-199.
8. Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, Lee YK. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 2013;7(8):6858-6867.
9. Qiu J, Zhang R, Li J, Sang Y, Tang W, Gil PR, Liu H. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems. Int J Nanomedicine. 2015;10(1):6709-6724.
10. Raja IS, Molkenova A, Kang MS, Lee SH, Lee JE, Kim B, Han DW, Atabaev TH. Differential Toxicity of Graphene Family Nanomaterials Concerning Morphology. In: Han DW, Hong SW, eds. Multifaceted Biomedical Applications of Graphene. Springer Nature Pte Ltd 2022; 23-39.
11. Tabish TA, Scotton CJ, Ferguson DCJ, Lin L, van der Veen A, Lowry S, Ali M, Jabeen F, Ali M, Winyard PG, Zhang S. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine. 2018;13(15):1923-1937.
12. Li P, Xu T, Wu S, Lei L, He D. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans. J Appl Toxicol. 2017;37(10):1140-1150.
13. Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B. 2014;2(21):3190-3195.
14. Wang S, Cole IS, Li Q. The toxicity of graphene quantum dots. RSC Adv. 2016;6(92):89867-89878.
15. Tajik S, Dourandish Z, Zhang K, Beitollahi H, Le QV, Jang HW, Shokouhimehr M. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020;10(26):15406-15429.
16. Henna TK, Pramod K. Graphene quantum dots redefine nanobiomedicine. Mater Sci Eng C. 2020;110:110651.
17. Masteri-Farahani M, Ghorbani F, Mosleh N. Boric acid modified S and N codoped graphene quantum dots as simple and inexpensive turn-on fluorescent nanosensor for quantification of glucose. Spectrochim Acta A Mol Biomol Spectrosc. 2021;245:118892.
18. Li L, Li L, Wang C, Liu K. Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim Acta. 2015;182:763-770.
19. Xue G, Yu S, Qiang Z, Xiuying L, Lijun T, Jiangrong L. Application of maleimide modified graphene quantum dots and porphyrin fluorescence resonance energy transfer in the design of ‘’turn-on’’ fluorescence sensors for biothiols. Anal Chim Acta. 2020;1108:46-53.
20. Yu D, Zhang X, Qi Y, Ding S, Cao S, Zhu A, Shi G. Pb2+-modified graphene quantum dots as a fluorescent probe for biological aminothiols mediated by an inner filter effect. Sens Actuators B Chem. 2016;235:394-400.
21. Zhu Q, Mao H, Li J, Hua J, Wang J, Yang R, Li Z. A glycine-functionalized graphene quantum dots synthesized by a facile post-modification strategy for a sensitive and selective fluorescence sensor of mercury ions. Spectrochim Acta A Mol Biomol Spectrosc. 2021;247:119090.
22. Zhang P, Zhao X, Ji Y, Ouyang Z, Wen X, Li J, Su Z, Wei G. Electrospinning graphene quantum dots into nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J Mater Chem B. 2015;2(12):2487-2496.
23. Safaei-Ghomi J, Elyasi Z, Babaei P. N-doped graphene quantum dots modified with CuO (0D)/ZnO (1D) heterojunction as a new nanocatalyst for environmental being one-pot synthesis of monospiro derivatives. New J Chem. 2021;45(3):1269-1277.
24. Xu T, Wang D, Dong L, Shen H, Lu W, Chen W. Graphitic carbon nitride comodified by zinc phthalocyanine and graphene quantum dots for the efficient photocatalytic degradation of refractory contaminants. Appl Catal B Environ. 2019;244:96-106.
25. Yu Z, Ma W, Wu T, Wen J, Zhang Y, Wang L, He Y, Chu H, Hu M. Coumarin-modified graphene quantum dots as a sensing platform for multicomponent detection and its applications in fruits and living cells. ACS Omega. 2020;5:7369-7378.
26. Yang S, Zhu C, Sun J, He P, Yuan N, Ding J, Ding G, Xie X. Triphenylphosphine modified graphene quantum dots: spectral modulation for full spectrum of visible light with high quantum yield. RSC Adv. 2015;5(42):33347-33350.
27. Guo R, Zhou S, Li Y, Li X, Fan L, Voelcker NH. Rhodamine-functionalized graphene quantum dots for detection of Fe3+ in cancer stem cells. ACS Appl Mater Interfaces. 2015;7(43):23958-23966.
28. Song H, Wang Y, Wang J, Wang G, He J, Wei H, Luo S. Preparation and biodistribution of 131I-labeled graphene quantum dots. J Radioanal Nucl Chem. 2018;316:685-690.
29. Gharepapagh E, Fakhari A, Firuzyar T, Shomali A, Azimi F. Preparation, biodistribution and dosimetry study of Tc-99m labeled N-doped graphene quantum dot nanoparticles as a multimodular radiolabeling agent. New J Chem. 2021;45(8):3909–3919.
30. Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, Dai J, Fan S, Zhang Z. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35:5041–5048.
31. Kim DJ, Yoo JM, Suh Y, Kim D, Kang I, Moon J, Park M, Kim J, Kang KS, Hong BH. Graphene quantum dots from carbonized coffee bean wastes for biomedical applications. Nanomaterials. 2021;11(6):1423.
32. Tang H, Li Y, Kakinen A, Andrikopoulos N, Sun Y, Kwak E, Davis TP, Ding F, Ke PC. Graphene quantum dots obstruct the membrane axis of Alzheimer’s amyloid beta. PCCP. 2022;24(1):86-97.
33. Rostamzadeh F, Shadkam-Farrokhi M, Jafarinejad-Farsangi S, Najafipour H, Ansari-Asl Z, Yeganeh-Hajahmadi M, Flora SJS. PEGylated graphene quantum dot improved cardiac function in rats with myocardial infarction: morphological, oxidative stress, and toxicological evidences. Oxid Med Cell Longev. 2021;2021:1-15.
34. Al-Nahain A, Lee JE, In I, Lee H, Lee KD, Jeong JH, Park SY. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm. 2013;10(10):3736-3744.
35. Jia Q, Li Z, Guo C, Huang X, Song Y, Zhou N, Wang M, Zhang Z, He L, Du M. A γ-cyclodextrin-based metal-organic framework embedded with graphene quantum dots and modified with PEGMA via SI-ATRP for anticancer drug delivery and therapy. Nanoscale. 2019;11:20956-20967.
36. Wei Z, Yin X, Cai Y, Xu W, Song C, Wang Y, Zhang J, Kang A, Wang Z, Han W. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int J Nanomed. 2018;13:1505-1524.
37. Nafiujjaman M, Revuri V, Park HK, Kwon IK, Cho KJ, Lee YK. Enhanced Photodynamic Properties of Graphene Quantum dot Conjugated Ce6 Nanoparticles for Targeted Cancer Therapy and Imaging. Chem Lett. 2016;45(8):997-999.
38. Wang C, Chen Y, Xu Z, Chen B, Zhang Y, Yi X, Li J. Fabrication and characterization of novel cRGD modified graphene quantum dots for chemophotothermal combination therapy. Sens Actuators B Chem. 2020;309:127732.
39. Cao Y, Dong H, Yang Z, Zhong X, Chen Y, Dai W, Zhang X. Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related MicroRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Appl Mater Interfaces. 2017;9(1):159-166.
40. Yang S, Wang X, He P, Xu A, Wang G, Duan J, Shi Y, Ding G. Graphene quantum dots with pyrrole N and pyridine N: Superior reactive oxygen species generation efficiency for metal-free sonodynamic tumor therapy. Small. 2021;17(10):200867.
41. Yan H, Wang Q, Wang J, Shang W, Xiong Z, Zhao L, Sun X, Tian J, Kang F, Yun SH. Planted graphene quantum dots for targeted, enhanced tumor imaging and long-term visualization of local pharmacokinetics. Adv Mater. 2023;35:2210809.
42. Qi L, Pan T, Ou L, Ye Z, Yu C, Bao B, Wu Z, Cao D, Dai L. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage. Commun Biol. 2021;4:214.
43. Kuo WS, Shao YT, Huang KS, Chou TM, Yang CH. Antimicrobial amino functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Appl Mater Interfaces. 2018;10(17):14438-14446.
44. Zubair M, Husain FM, Fatima F, Oves M, Ansari MA, Almari M. Graphene quantum dots biomedical and environmental sustainability applications. In: Oves M, Umar K, Ismail IMI, Ibrahim MNM, editors. Woodhead Publishing; 2023. p. 83-100. 
45. Kortel M, Mansuriya BD, Santana NV, Altintas Z. Graphene quantum dots as flourishing nanomaterials for bio-imaging, therapy development, and microsupercapacitors. Micromachines. 2020;11:866.
46. Wang C, Wu C, Zhou X, Han T, Xin X, Wu J, Zhang J, Guo S. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci Rep. 2013;3(1):2852.
47. Gaitan MG, Stenmark H. Endocytosis and signaling: A relationship under development. Cell. 2003;115(5):513–521.
48. Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018;19(5):313–326.
49. Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 2009;66(17):2873–2896.
50. Nichols B. Caveosomes and endocytosis of lipid rafts. J Cell Sci. 2003;116(23):4707–4714.
51. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128:7756–7757.
52.Gonçalves H, Esteves da Silva JC. Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid. J Fluoresc. 2010;20:1023–1028.
53. Chandra A, Deshpande S, Shinde DB, Pillai VK, Singh N. Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery. ACS Macro Lett. 2014;3:1064–1068.
54. Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, Dai J, Fan S, Zhang Z. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35:5041–5048.
55. Sachdev A, Matai I, Gopinath P. Implications of surface passivation on physicochemical and bioimaging properties of carbon dots. RSC Adv. 2014;4:20915–20921.
56.Gao T, Wang X, Yang L-Y, He H, Ba X-X, Zhao J, Jiang F-L, Liu Y. Red, yellow, and blue luminescence by graphene quantum dots: syntheses, mechanism, and cellular imaging. ACS Appl Mater Interfaces. 2017;9:24846–24856.
57. Havrdova M, Hola K, Skopalik J, Tomankova K, Petr M, Cepe K, Polakova K, Tucek J, Bourlinos AB, Zboril R. Toxicity of carbon dots–Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon. 2016;99:238–248.
58. Wu Y, Wei H, van der Mei HC, de Vries J, Busscher HJ, Ren Y. Inheritance of physico-chemical properties and ROS generation by carbon quantum dots derived from pyrolytically carbonized bacterial sources. Mater Today Bio. 2021;12:100151.
59. Xu H, Zhou S, Xiao L, Wang H, Li S, Yuan Q. Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J Mater Chem C. 2015;3:291–297.
60. Yang J-M, Hu X-W, Liu Y-X, Zhang W. Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol. Micropor. Mesopor Mater 2019;274:149–154.
61. Wei X, Wang Y, Huang Y, Fan C. Composite ZIF-8 with CQDs for boosting visible-light-driven photocatalytic removal of NO. J Alloy Compd 2019;802:467–476.
62. Wang X-M, Geng Z-M, Sun H, Cong H-L, Yu B. Preparation of C-ZIF-8 composite nanoparticles. Integr Ferroelectr. 2018;188:130–135.
63. Camlik G, Ozakca I, Bilakaya B, Ozcelikay AT, Velaro AJ, Wasnik S, Degim IT. Development of composite carbon quantum dots-insulin formulation for oral administration. J Drug Delivery Sci Technol. 2022;76:103833.
64. Su M, Liu H, Ge L, Wang Y, Ge S, Yu J, Yan M. Aptamer-Based electrochemiluminescent detection of MCF-7 cancer cells based on carbon quantum dots coated mesoporous silica nanoparticles. Electrochim Acta. 2014;146:262–269.
65. Nozaki T, Kakuda T, Pottathara YB, Kawasaki H. A nanocomposite of N-doped carbon dots with gold nanoparticles for visible light active photosensitisers. Photochem. Photobiol Sci. 2019;18:1235–1241.
66. Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112:2373–2433.
67. Alijani HQ, Fathi A, Amin HIM, Lima Nobre MA, Akbarizadeh MR, Khatami M, et al. Biosynthesis of core–shell α-Fe2O3@ Au nanotruffles and their biomedical applications. Biomass Convers Biorefin. 2022;1–15.
68. Eskalen H, Urus¸ S, C¨omertpay S, Kurt AH, ¨Ozgan S¸. Microwave-assisted ultrafast synthesis of carbon quantum dots from linter: Fluorescence cancer imaging and human cell growth inhibition properties. Ind Crop Prod. 2020;147:112209.
69. Kong RM, Yang A, Wang Q, Wang Y, Ma L, Qu F. Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@ silver core-shell nanocomposites. Microchim Acta. 2018;185:1–8.
70. Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F. Graphene oxide quantum dots@ silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron. 2015;74:909–914.
71. Liu Q, Guo B, Rao Z, Zhang B, Gong JR. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013;13:2436–2441.
72.Zhang J, Yu SH. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today. 2016;19:382–393.
73. Wang B, Cai H, Waterhouse GI, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. Small Sci. 2022;2200012.
74. Li LP, Ren XF, Bai PR, Liu Y, Xu WY, Xie J, et al. Near-infrared emission carbon dots for bio-imaging applications. New Carbon Mater. 2021;36:632–638.
75. Du J, Xu N, Fan J, Sun W, Peng X. Carbon dots for in vivo bioimaging and theranostics. Small. 2019;15:1805087.
76. Zhou N, Hao Z, Zhao X, Maharjan S, Zhu S, Song Y, et al. A novel fluorescent retrograde neural tracer: cholera toxin B conjugated carbon dots. Nanoscale. 2015;7:15635–15642.
77. Yuan F, Ding L, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale. 2015;7:11727–11733.
78. Fan Z, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S. Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon. 2014;70:149–156.
79. Wang N, Zheng AQ, Liu X, Chen JJ, Yang T, Chen ML, Wang JH. Deep eutectic solvent-assisted preparation of nitrogen/chloride-doped carbon dots for intracellular biological sensing and live cell imaging. ACS Appl Mater Interfaces. 2018;10:7901–7909.
80. Sadhanala HK, Nanda KK. Boron-doped carbon nanoparticles: Size-independent color tunability from red to blue and bioimaging applications. Carbon. 2016;96:166–173.
81. Ruan S, Qian J, Shen S, Chen J, Zhu J, Jiang X, He Q, Yang W, Gao H. Fluorescent carbonaceous nanodots for noninvasive glioma imaging after angiopep-2 decoration. Bioconjug Chem. 2014;25:2252–2259.
82. Li H, Yan X, Qiao S, Lu G, Su X. Yellow-emissive carbon dot-based optical sensing platforms: cell imaging and analytical applications for biocatalytic reactions. ACS Appl. Mater. Interfaces. 2018;10:7737–7744.
83. Xue M, Zhao J, Zhan Z, Zhao S, Lan C, Ye F, Liang H. Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy. Nanoscale. 2018;10:18124–18130.
84. Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B. 2017;5:8904–8924.
85. Jana P, Dev A. Carbon Quantum Dots: A Promising Nanocarrier for Bioimaging and Drug Delivery in Cancer. Mater. Today Commun. 2022;104068.
86. Azizi M, Valizadeh H, Shahgolzari M, Talebi M, Baybordi E, Dadpour MR, Salehi R, Mehrmohammadi M. Synthesis of self-targeted carbon dot with ultrahigh quantum yield for detection and therapy of cancer. ACS Omega. 2020;5:24628–24638.
87. Majood M, Garg P, Chaurasia R, Agarwal A, Mohanty S, Mukherjee M. Carbon quantum dots for stem cell imaging and deciding the fate of stem cell differentiation. ACS Omega. 2022;7:28685–28693.
88. Hamd-Ghadareh S, Salimi A, Fathi F, Bahrami S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bioapplications in labeling, imaging and sensing. Biosensors and Bioelectronics. 2017;96:308-316.
89. Demir B, Lemberger MM, Panagiotopoulou M, Medina Rangel PX, Timur S, Hirsch T, et al. Tracking hyaluronan: molecularly imprinted polymers with quantum dots as fluorescent sensors. ACS Applied Mater Interfaces. 2017;9(19):16051-16059.
90.Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44(14):4792-4834.
91. Liu T, Liu Z, Wu J, Zhang K, An H, Hu Z, et al. Broadband near-infrared persistent luminescence in Ni2+-doped transparent glass-ceramic ZnGa2O4. New J Chem. 2019;46(3):851-856.
92. Li Y, Dong H, Tao Q, Ye C, Yu M, Li J, et al. Enhancing the magnetic relaxivity of MRI contrast agents via the localized superacid microenvironment of graphene quantum dots. Biomaterials. 2020;250:120056.
93. Yang ST, Cao L, Luo PG, Lu F, Wang X, Wang H, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131(32):11308-11309.
94. Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small. 2012;8(2):281-290.
95. Gao G, Jiang Y-W, Yang J, Wu F-G. Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale. 2017;9(52):18368-18378.
96. Huang X, Zhang F, Zhu L, Choi K, Guo N, Guo J, et al. Carbon nanotube optically-based neural sensing platform for wireless recording of neural activity. ACS Nano. 2013;7(6):5684-5693.
97. Wang Y, Meng Y, Wang S, Li C, Shi W, Chen J, et al. Direct solvent-derived polymer-coated nitrogen-doped carbon nanodots with high water solubility for targeted fluorescence imaging of glioma. Small. 2015;11(30):3575-3581.
98.Licciardello N, Hunoldt S, Bergmann R, Singh G, Mamat C, Faramus A, et al. Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale. 2018;10(20):9880-9891.
99. Li X, Wang Y, Chen Y, Zhou P, Wei K, Wang H, Wang J, Fang H, Zhang S. Hierarchically constructed selenium-doped bone-mimetic nanoparticles promote ROS-mediated autophagy and apoptosis for bone tumor inhibition. Biomaterials. 2020;257:120253.
100. Maashi MS, Al-Mualm M, Al-Awsi GRL, Opulencia MJC, Al-Gazally ME, Abdullaev B, Abdelbasset WK, Ansari MJ, Jalil AT, Alsaikhan F. Apigenin alleviates resistance to doxorubicin in breast cancer cells by acting on the JAK/ STAT signaling pathway. Mol Biol Rep. 2022;49(5):8777-8784.
101. Mintz KJ, Cilingir EK, Nagaro G, Paudyal S, Zhou Y, Khadka D, et al. Development of red-emissive carbon dots for bioimaging through a building block approach: fundamental and applied studies. Bioconjug Chem. 2021;33(1):226-237.
102. Su R, Yan H, Jiang X, Zhang Y, Li P, Su W. Orange-red to NIR emissive carbon dots for antimicrobial, bioimaging and bacteria diagnosis. J Mater Chem B. 2022;10(5):1250-1264.
103. Chu X, Zhang P, Wang Y, Sun B, Liu Y, Zhang Q, Feng W, Li Z, Li K, Zhou N. Near-infrared carbon dot-based platform for bioimaging and photothermal/photodynamic/quaternary ammonium triple synergistic sterilization triggered by single NIR light source. Carbon. 2021;176:126-138.
104. Naji GH, Fareed NY, Al-Zheery WH. Dendrimer as a recent drug delivery system: An overview. J Biomedi Biochem. 2022;1(3):57-69.
105. Feng T, Chua HJ, Zhao Y. Reduction-responsive carbon dots for real-time ratiometric monitoring of anticancer prodrug activation in living cells. ACS Biomater Sci Eng. 2017;3(7):1535-1541.
106. Gong X, Zhang Q, Gao Y, Shuang S, Choi MM, Dong C. Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging. ACS Appl Mater Interfaces. 2016;8(17):11288-11297.
107. Zhang M, Wang W, Zhou N, Yuan P, Su Y, Shao M, et al. Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon. 2017;118:752-764.
108.Gao N, Yang W, Nie H, Gong Y, Jing J, Gao L, Zhang X. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens Bioelectron. 2017;96:300-307.
109. Ashrafizadeh M, Mohammadinejad R, Kailasa SK, Ahmadi Z, Afshar EG, Pardakhty A. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: a review. Adv Colloid Interface Sci. 2020;278:102123.
110. Wu H, Su W, Xu H, Zhang Y, Li Y, Li X, Fan L. Applications of carbon dots on tumor theranostics. View. 2021;2:20200061.
111. Shi X, Meng H, Sun Y, Qu L, Lin Y, Li Z, Du D. Far-red to near-infrared carbon dots: preparation and applications in biotechnology. Small. 2019;15:1901507.
112. Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv Mater. 2018;30:1706090.
113. Ding H, Yu SB, Wei JS, Xiong HM. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 2016;10:484-491.
114. Yang W, Zhang H, Lai J, Peng X, Hu Y, Gu W, Ye L. Carbon dots with redshifted photoluminescence by fluorine doping for optical bio-imaging. Carbon. 2018;128:78-85.
115. Wang H, Mukherjee S, Yi J, Banerjee P, Chen Q, Zhou S. Biocompatible chit chitosan–carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal–chemo therapy. ACS Appl Mater Interfaces. 2017;9:18639-18649.
116. Guo XL, Ding ZY, Deng SM, Wen CC, Shen XC, Jiang BP, Liang H. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon. 2018;134:519-530.
117. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
118. Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature. 2009;458:877–880.
119. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 2009;458:872–8766.
120. Bak S, Kim D, Lee H. Graphene quantum dots and their possible energy applications: A review. Curr Appl Phys. 2016;16:1192–1201.
121. Zheng P, Wu N. Fluorescence and sensing applications of graphene oxide and graphene quantum dots: A review. Chem Asian J. 2017;12:2343–2353.
122. Yan Y, Gong J, Chen J, Zeng Z, Huang W, Pu K, et al. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv Mater. 2019;31:e1808283.
123. Karami MH, Pourmadadi M, Abdouss M, Kalaee MR, Moradi O, Rahdar A, et al. Novel chitosan/γ-alumina/carbon quantum dot hydrogel nanocarrier for targeted drug delivery. Int J Biol Macromol. 2023;251:126280.
124. Singh H, Sreedharan S, Tiwari K, Green NH, Smythe C, Pramanik SK, et al. Two-photon excitable graphene quantum dots for structured illumination microscopy and imaging applications: Lysosome specificity and tissue-dependent imaging. Chem Commun. 2019;55:521–524.
125. Qu C, Zhang D, Yang R, Hu J, Qu L. Nitrogen and sulfur co-doped graphene quantum dots for the highly sensitive and selective detection of mercury ion in living cells. Spectrochim Acta A Mol Biomol Spectrosc. 2019;206:588–596.
126. Li X, Guo H, Ren S, Fan R, Yu Y, Zhang H, et al. Fluorescent labelling in living dental pulp stem cells by graphene oxide quantum dots. Appl Biochem Biotechnol. 2019;47:115–122.
127. Nasrollahi F, Koh YR, Chen P, Varshosaz J, Khodadadi AA, Lim S. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater Sci Eng C. 2019;94:247–257.
128. Tajik S, Dourandish Z, Zhang K, Beitollahi H, Le QV, Jang HW, Shokouhimehr M. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020;10(26):15406–15429.
129. Henna TK, Pramod K. Graphene quantum dots redefine nanobiomedicine. Mater Sci Eng C. 2020;110:110651.
130. Masteri-Farahani M, Ghorbani F, Mosleh N. Boric acid modified S and N codoped graphene quantum dots as simple and inexpensive turn-on fluorescent nanosensor for quantification of glucose. Spectrochim Acta A Mol Biomol Spectrosc. 2021;245:118892.
131. Rahmani E, et al. pH-Responsive PVA-based nanofibers containing GO Modified with Ag nanoparticles: physico-chemical characterization, wound dressing, and drug delivery. Micromachines. 2022;13(11):1847.
132. Heydari Foroushani P, et al. Curcumin sustained release with a hybrid chitosan-silk fibroin nanofiber containing silver nanoparticles as a novel highly efficient antibacterial wound dressing. Nanomaterials. 2022;12(19):3426.
133. Desmond LJ, Phan AN, Gentile P. Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environ Sci J Integr Environ Res Nano. 2021;8(4):848–862.
134. Molaei MJ. Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv. 2019;9(12):6460–6481.
134. Pooresmaeil M, Namazi H, Salehi R. Dual anticancer drug delivery of D-galactose-functionalized stimuli-responsive nanogels for targeted therapy of the liver hepatocellular carcinoma. Eur Polym J. 2022;167:111061.
135. Pourmadadi M, Tajiki AR, Hosseini SM, Samadi AM, Abdouss M, Daneshnia Sh, Yazdian F. A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications. J Drug Deliv Sci Technol. 2022;103767.
136. Pourmadadi M, Tajiki AR, Hosseini SM, Samadi AM, Abdouss M, Daneshnia Sh, Yazdian F. Two-dimensional graphitic carbon nitride (g-C3N4) Nanosheets and their Derivatives for Diagnosis and detection applications. J Funct Biomater. 2022;4(13):204.
137. Siddique S, Chow JC. Recent advances in functionalized nanoparticles in cancer theranostics. Nanomaterials. 2022;12:2826.
138. Abdellatif AA, Younis MA, Alsharidah M, Al Rugaie O, Tawfeek HM. Biomedical applications of quantum dots: Overview, challenges, and clinical potential. Int J Nanomed. 2022;17:1951–1970.
139. Priyadarshini E, Meena R, Bohidar HB, Sharma SK, Abdellattif MH, Saravanan M, Rajamani P. Comparative in vitro cytotoxicity study of carbon dot-based organometallic nanoconjugates: exploration of their cell proliferation, uptake, and localization in cancerous and normal cells. Oxid Med Cell Longev. 2022;3483073.
140. Li L, Yang J, Wei J, Jiang C, Liu Z, Yang B, Zhao B, Song W. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy. Light Sci Appl. 2022;11:286.
141.Yao L, Zhao MM, Luo QW, Zhang YC, Liu TT, Yang Z, Liao M, Tu P, Zeng KW. Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity. ACS Nano. 2022;16:9228-9239.
142. Wei X, Yang D, Wang L, Wen Z, Cui Z, Wang L, He H, Zhang W, Han Z, Mei S, et al. Facile synthesis of red-emissive carbon dots with theoretical understanding for cellular imaging. Colloids Surf B Biointerfaces. 2022;220:112869.
143. Liu H, Li C, Qian Y, Hu L, Fang J, Tong W, Wang H. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials. 2020;232:119700.
144. Ghafary SM, Rahimjazi E, Hamzehil H, Mousavi SMM, Nikkhah M, Hosseinkhani S. Design and preparation of a theranostic peptideticle for targeted cancer therapy: Peptide-based codelivery of doxorubicin/curcumin and graphene quantum dots. Nanomed Nanotechnol Biol Med. 2022;42:102544. 
145. Wang Y, Chen J, Tian J, Wang G, Luo W, Huang Z, Fan X. Tryptophan-sorbitol based carbon quantum dots for theranostics against hepatocellular carcinoma. J Nanobiotechnol. 2022;20:78. 
146.Li Y, Zhang P, Tang W, McHugh KJ, Kershaw SV, Jiao M, Han B. Bright, magnetic NIR-II quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer. ACS Nano. 2022;16:8076-8094.