Exploring the potential of AgNPs in modulating the PI3K/AKT/mTOR pathway via miR-133a regulation in MCF-7 breast cancer cells

Document Type : Research Paper

Authors

1 Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

2 Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran

Abstract

Objective(s): Breast cancer is the most common malignancy in women. MiRNAs modulate the PI3K/AKT/mTOR (PAM) pathway, functioning as either tumor suppressors or oncogenes. This research explores the impact of AgNPs on breast cancer cells while emphasizing the interplay between miR-133a and the PAM pathway and uncovering regulatory mechanisms.
Materials and Methods: To assess the impact of AgNPs on cell growth and survival, we performed an MTT assay. Additionally, we employed bioinformatic methodologies to predict potential targets of miR-133a within the PAM pathway. We quantified the expression levels of miR-133a, PI3K, AKT, PTEN, and mTOR in MCF-7 cells after exposure to AgNPs using qRT-PCR. Furthermore, we employed Western blotting to evaluate the protein expression of mTOR.
Results: The MTT assay results demonstrated a significant dose- and time-dependent inhibition of breast cancer cells by AgNPs. The qRT-PCR analysis revealed an upregulation in the mRNA expression levels of PI3K and AKT, accompanied by a downregulation in the mRNA expression levels of PTEN and mTOR upon exposure to AgNPs. However, the efficacy and expression level of miR-133a as a tumor suppressor in breast cancer cells remained unchanged following exposure to AgNPs (IC50).
Conclusion: The study found that AgNPs inhibit breast cancer cell growth, affecting the PAM pathway, but miR-133a remained unchanged, suggesting AgNPs may not primarily act through miR-133a. Further research is needed, but caution is advised when using AgNPs for cancer control and treatment. 

Keywords


1.     Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, et al. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 2023;22(1):1–40.
2.     Taká P, Michalková R, Martina Č, Bedlovi Z, Balážová Ľ, Taká G. The role of silver nanoparticles in the diagnosis and treatment of cancer: Are There Any Perspectives for the Future?. Life (Basel). 2023;13(2):1-44. 
3.     Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017;263(3):1-16. 
4.     Mahmoudian M, Valizadeh H, Zakeri-Milani P. Bortezomib-loaded solid lipid nanoparticles: preparation, characterization, and intestinal permeability investigation. Drug Dev Ind Pharm. 2018;44(10):1598-1605. 
5.     Wang LM, Wang YT, Yang WX. Engineered nanomaterials induce alterations in biological barriers: Focus on paracellular permeability. Nanomedicine (Lond). 2021;16(30):2725-2741.
6.     Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):1-29. 
7.     Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, et al. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35:1-30. 
8.     Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–562.
9.     Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int J Mol Sci. 2021;22(1):1–24. 
10.     Ortega MA, Fraile-Martínez O, Asúnsolo Á, Buján J, García-Honduvilla N, Coca S. Signal Transduction Pathways in Breast Cancer: The Important Role of PI3K/Akt/mTOR. J Oncol. 2020;2020:1-11. 
11.     Rahmani F, Ferns GA, Talebian S, Nourbakhsh M, Avan A, Shahidsales S. Role of regulatory miRNAs of the PI3K/AKT signaling pathway in the pathogenesis of breast cancer. Gene. 2020;737:1-11. 
12.     González-Palomo AK, Saldaña-Villanueva K, Cortés-García JD, Fernández-Macias JC, Méndez-Rodríguez KB, Pérez Maldonado IN. Effect of silver nanoparticles (AgNPs) exposure on microRNA expression and global DNA methylation in endothelial cells EA.hy926. Environ Toxicol Pharmacol. 2021;81:1-38. 
13.     Amaldoss MJN, Yang JL, Koshy P, Unnikrishnan A, Sorrell CC. Inorganic nanoparticle-based advanced cancer therapies: Promising combination strategies. Drug Discov Today. 2022;27(12):1–14. 
14.     Li M, Marin-Muller C, Bharadwaj U, Chow K-H, Yao Q, Chen C. MicroRNAs: control and loss of control in human physiology and disease. World J Surg. 2009;33(4):1-28. 
15.     Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs biogenesis, functions and role in tumor angiogenesis. Front Oncol. 2020;10:1-21.  
16.     Hua YT, Xu WX, Li H, Xia M. Emerging roles of MiR-133a in human cancers. J Cancer. 2021;12(1):1-9. 
17.     He H, Tian W, Chen H, Jiang K. MiR-944 functions as a novel oncogene and regulates the chemoresistance in breast cancer. Tumour Biol. 2016;37(2):1-9.
18.     Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers (Basel). 2021;13(17):1-30.
19.     Rakowski M, Porębski S, Grzelak A. Silver nanoparticles modulate the epithelial-to-mesenchymal transition in estrogen-dependent breast cancer cells in vitro. Int J Mol Sci. 2021;22(17):1-23. 
20.     Sharma V, Sharma AK, Punj V, Priya P. Seminars in Cancer Biology Recent nanotechnological interventions targeting PI3K / Akt / mTOR pathway : A focus on breast cancer. Semin Cancer Biol. 2019;59:1-14. 
21.     Issinger OG, Guerra B. Phytochemicals in cancer and their effect on the PI3K/AKT-mediated cellular signalling. Biomed Pharmacother. 2021;139:1-11.
22.     Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):1-13. 
23.     Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):1-33.
24.     Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):1-25. 
25.     Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):1-11. 
26.     Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci. 1998;95(23):1-6. 
27.     Maehama T, Taylor GS, Dixon JE. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem. 2001;70(1):1-32.
28.     Nguyen K-TT, Tajmir P, Lin CH, Liadis N, Zhu X-D, Eweida M, et al. Essential role of Pten in body size determination and pancreatic β-cell homeostasis in vivo. Mol Cell Biol. 2006;26(12):1-8. 
29.     Popova N V., Jücker M. The role of mtor signaling as a therapeutic target in cancer. Int J Mol Sci. 2021;22(4):1–30.
30.     Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol. 2019;80:1-17.
31.     Xing Y, Lin NU, Maurer MA, Chen H, Mahvash A, Sahin A, et al. Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res. 2019;21(78):1–12. 
32.     Zhao X, Qi T, Kong C, Hao M, Wang Y, Li J, et al. Photothermal exposure of polydopamine-coated branched Au–Ag nanoparticles induces cell cycle arrest, apoptosis, and autophagy in human bladder cancer cells. Int J Nanomedicine. 2018;13:1-16. 
33.     Chang X, Wang X, Li J, Shang M, Niu S, Zhang W, et al. Silver nanoparticles induced cytotoxicity in HT22 cells through autophagy and apoptosis via PI3K/AKT/mTOR signaling pathway. Ecotoxicol Environ Saf. 2021;208:1-9. 
34.     Kang K, Lim D-H, Choi I-H, Kang T, Lee K, Moon E-Y, et al. Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol Lett. 2011;205(3):1-8. 
35.     Sangour MH, Ali IM, Atwan ZW, Al Ali AAALA. Effect of Ag nanoparticles on viability of MCF-7 and Vero cell lines and gene expression of apoptotic genes. Egypt J Med Hum Genet. 2021;22(9):1–11. 
36.     Wu Z, Wang C, Xiang R, Liu X, Ye S, Yang X, et al. Loss of miR-133a expression associated with poor survival of breast cancer and restoration of miR-133a expression inhibited breast cancer cell growth and invasion. BMC Cancer. 2012;12(51):1–10. 
37.     Yoon J, Shin M, Lee JY, Lee SN, Choi JH, Choi JW. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release. 2022;342:1-13. 
38.     Huang Y, Lü X, Lü X. Study of key biological pathways and important microRNAs involved in silver nanoparticles induced cytotoxicity based on microRNA sequencing technology. J Biomed Nanotechnol. 2018;14(12):1-14. 
39.     Brzóska K, Gradzka I, Kruszewski M. Silver, gold, and iron oxide nanoparticles alter miRNA expression but do not affect DNA methylation in HepG2 cells. Materials (Basel). 2019;12(7):1-12.