Green synthesis of silver and cobalt oxide nanoparticles using Croton macrostaychus plant extract and evaluation of their antibacterial activity

Document Type : Research Paper

Authors

Department of Applied Chemistry, Adama Science and Technology University, Ethiopia

Abstract

Objective(s): Cognizant of the harsh chemical method of nanoparticles synthesis, researchers are shifting towards the green phyto-mediated synthetic approaches. We herein report the green synthesis of Ag NPs and Co3O4 NPs using silver nitrate solution and cobalt nitrate solution as precursors added to aqueous extract of Croton Macrostachyus leaf extract to evaluate their antibacterial activity. 
Materials and Methods: The Characterization of the biosynthesized NPs were carried out by using spectroscopic techniques as X-ray diffraction (XRD), UV-Vis spectroscopy, Fourier Transform Infrared (FTIR), and scanning electron microscopy (SEM).
Results: The average crystallite size of Ag NPs was found to be 12.62 nm from the XRD data, indicating a cubic crystal structure whereas that of Co3O4 NPs was found to be 12.75 nm, indicating a cubic spinel crystal structure.  The energy band gap for Ag NPs and Co3O4 NPs were 3.38 eV, and 3.34 eV respectively. The SEM images showed non-homogeneity of particles distribution with irregular geometries attributable to their shape and size for Ag NPs whereas spherical as well as irregular geometries attributed to non-homogeneity of the particles for Co3O4 NPs. The FTIR identifies the functional groups of the bioactive molecules that were actively involved as stabilizing and capping agents to prevent agglomeration of Ag NPs and Co3O4 NPs. The agar-well diffusion method was employed to evaluate the antibacterial activities of the produced nanoparticles against gram-positive (S. aureus and E. faecalis) and gram-negative (E. coli, S. typhimrium) bacterial strains. 
Conclusion: The biosynthesized nanoparticles showed promising antibacterial activities with Ag NPs exhibiting the best inhibition activities towards all bacteria species. 

Keywords


1. World Health Organization (2014, April), Antimicrobial resistance: Global report on
surveillance, (No. 256). Dr Johan Struwe.
2.    World Health Organization. (2021), ‘Global antimicrobial resistance and use surveillance system (GLASS) report.
3.    Fernando S, Gunasekara T, Holton J. Antimicrobial nanoparticles: applications and mechanisms of action. SLJID 2018;8(1):2-11.
4.    Guo Z, Chen Y, Wang Y, Jiang H, Wang X. Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. J Mater Chem B. 2020;8(22):4764-4777.
5.    Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249. 
6.    Anu Mary Ealia S, Saravanakumar, MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering. 2017;263(3):032019.
7.    Alvi GB, Iqbal MS, Ghaith MMS, Haseeb A, Ahmed B, Qadir MI. Biogenic selenium nanoparticles (SeNPs) from citrus fruit have anti-bacterial activities. Sci Rep. 2021;11(1). 
8.     Akinsiku AA, Dare EO, Ajani OO, Ayo-Ajayi J, Ademosun OT, Ajayi SO. Room temperature phytosynthesis of Ag/Co bimetallic nanoparticles using aqueous leaf extract of Canna indica. IOP Conf Ser Earth Environ Sci. 2018, 173(1):1-13.  
9.    Mohammadlou M, Maghsoudi H, Jafarizadeh-Malmiri HJ. A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. Int Food Res J 2016, 23(2): 446-463.
10.    Hafeez M, Shaheen R, Akram B, Haq S, Mahsud S, Ali S, Khan RT. Green synthesis of cobalt oxide nanoparticles for potential biological applications.  Mater Res Express 2020, 7(2):1-8.
11.    Agilandeswari K, Rubankumar A. Synthesis, characterization, optical, and magnetic properties of Co3O4 nanoparticles by quick precipitation. Synth React Inorg Met Org Nano-Met Chem. 2016, 46(4):502-506.
12.    Pagar T, Ghotekar S, Pagar K, Pansambal S, Oza R. A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications. J Chem Rev. 2019;1(4):260-270.
13.     Waris A, Din M, Ali A, Afridi S, Baset A, Khan AU, Ali, M. Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review. Open Life Sci. 2021; 16(1):14-30.
14.    Bawazeer S, Rauf A, Shah SUA, Shawky AM, Al-Awthan Y S, Bahattab OS, El-Esawi MA. Green synthesis of silver nanoparticles using Tropaeolum majus: Phytochemical screening and antibacterial studies. Green Process Synth. 2021 10(1):85-94.
15.    Saeed SY, Raees L, Mukhtiar A, Khan F, Khan M, Shah SK. Mazhar K. Green synthesis of cobalt oxide nanoparticles using roots extract of Ziziphus Oxyphylla Edegew its characterization and antibacterial activity. Mater Res Express. 2022; 9(10):1-9.
16.    Sun J, Wang Y, Zhang Y, Xu C, Chen H. Egg albumin-assisted hydrothermal synthesis of Co3O4 quasi-cubes as superior electrode material for supercapacitors with excellent performances. Nanoscale Res Lett 2019;14(1):340.
17.    Urnukhsaikhan E, Bold BE, Gunbileg A, Sukhbaatar N, Mishig-Ochir T. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci Rep 2021; 11(1):21047.
18.    Mehwish HM, Rajoka MSR, Xiong Y, Cai H, Aadil RM, Mahmood Q, Zhu Q. Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. J Environ Chem Eng. 2021;9(4):105290.
19.    Letha N, Ganesan K, Nair PSK, Azalewor HG, Gani SB. Evaluation  of in vitro antioxidant activity and phytochemical screening of Croton macrostachyus Hochst. by using different solvent extracts. Am J PharmTech Res 2016;6(1):73-85.
20.    Obey JK, von Wright A, Orjala J, Kauhanen J, Tikkanen-Kaukanen C. Antimicrobial activity of croton macrostachyus stem bark extracts against several human pathogenic bacteria. J Pathog. 2016;2016:1453428.
21.    Gebrehiwota H, Zelelewb D, Gebremariamc H. Chemical analysis and medicinal activities of volatile components from the seeds of Croton macrostachyus plant. Int J Sci Basic Appl Res 2018;37(2):316-330.
22.    Riaz M, Ismail M, Ahmad B, Zahid N, Jabbour G, Khan MS et al. Characterizations and analysis of the antioxidant, antimicrobial, and dye reduction ability of green synthesized silver nanoparticles. Green Process.Synth. 2020;9(1):693–705.
23.    Gizaw A, Marami LM, Teshome I, Sarba EJ, Admasu P, Babele DA, Abdisa K. Phytochemical screening and in vitro antifungal activity of selected medicinal plants against candida albicans and aspergillus niger in west shewa zone, Ethiopia. Adv Pharmacol Pharm Sci. 2022;2022:3299146.
24.    Murthy HCA, Desalegn T, Kassa M, Abebe B, Assefa T. Synthesis of green copper nanoparticles using medicinal plant hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties. J Nanomater. 2020;2020:1-12.
25.    Samuel MS, Selvarajan E, Mathimani T, Santhanam N, Phuong TN, Brindhadevi K, Pugazhendhi A. Green synthesis of cobalt-oxide nanoparticle using jumbo Muscadine (Vitis rotundifolia): Characterization and photo-catalytic activity of acid Blue-74. J Photochem Photobiol B. 2020 ;211:112011.
26.    Linh DHT, Anh NP, Mi TTA, Tinh NT, Cuong HT, Quynh TL, Van NTT, Minh NV, Tri N. Biosynthesis, characteristics and antibacterial activity of silver nanoparticles using Lemon Citrus latifolia extract. Mater Trans. 2018; 59(9):1501-1505.
27.    Ovais M, Khalil AT, Islam NU, Ahmad I, Ayaz M, Saravanan M, et al. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol. 2018;102(16):6799-6814.
28.    Zhou Y, Lin W, Huang J, Wang W, Gao Y, Lin L, et al. Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts. Nanoscale Res Lett. 2010;5(8):1351-1359.
29.    Ahmad N, Sharma S, Alam MK, Singh V, Shamsi S, Mehta B, Fatma A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 2010;81(1):81-86.
30.    Ghoreishi SM, Behpour M, Khayatkashani M. Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Phys. E: Low-Dimensional Systems and Nanostructures. 2011;44(1):97-104. 
31.    Raja S, Ramesh V, Thivaharan V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian J Chem. 2017; 10(2):253-261. 
32.    Mashwani  ZUR, Khan MA, Khan T, Nadhman A. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Colloid Interface Sci. 2016;234:132-141.
33.    Vorokh A. Scherrer formula: Estimation of error in determining small nanoparticle size. Nanosyst: Phys Chem Math. 2018;9(3):364–369. 
34.    Das AJ, Kumar R, Goutam SP. Sunlight irradiation induced synthesis of silver nanoparticles using glycolipid bio-surfactant and exploring the antibacterial activity. J Bioeng Biomed Sci. 2016;6(5):208. 
35.    Abebe B, Murthy HCA, Zereffa EA, Adimasu Y. Synthesis and characterization of ZnO/PVA nanocomposites for antibacterial and electrochemical applications. Inorg Nano-Met Chem. 2021;51(8):1127-1138.
36.    Shrestha S, Adhikari S. Size dependent optical properties of silver nanoparticles synthesized from fruit extract of malus pumila. J Nepal Chem Soc. 2017;37. 
37.    Vennela AB. Structural and optical properties of Co3O4 nanoparticles prepared by sol-gel technique for photocatalytic application. Int J Electrochem Sci. 2019;14(4): 3535-3552.
38.    Eltarahony M, Zaki S, ElKady M, Abd-El-Haleem D. Biosynthesis, characterization of some combined nanoparticles, and its biocide potency against a broad spectrum of pathogens. J Nanomater. 2018; (7):1-16.
39.    Agilandeswari K, Rubankumar A. Synthesis, characterization, optical, and magnetic properties of Co3O4 nanoparticles by quick precipitation. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2015;46(4):502-506.
40.    Farsi M, Farokhi S. Biosynthesis of antibacterial silver nanoparticles by endophytic Fungus Nemania sp. Isolated From Taxus baccata Linn. (Iranian Yew). Zahedan J Res Med Sci. 2018;20(6):e57916.  
41.    Sharma A, Sagar A, Rana J, Rani R. Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro and Nano Systems Letters. 2022;10(1):1-12. 
42.    Teshale A, Yonas M. Phytochemical investigation and characterization on the stem bark extract of croton macrostachyus. Chem Process Eng Res. 2020;4(6):113-121 
43.    Asha G, Rajeshwari V, Stephen G, Gurusamy S, Carolin Jeniba Rachel D. Eco-friendly synthesis and characterization of cobalt oxide nanoparticles by sativum species and its photo-catalytic activity. Materials Today: Proceedings. 2022;48:486-493.
44.    Bekele ET, Murthy HCA, Muniswamy D, Lemenh YA, Shume MS, Tadesse Ayanie G, et al. Solanum tuberosum leaf extract templated synthesis of Co3O4 nanoparticles for electrochemical sensor and antibacterial applications. Bioinorg Chem Appl. 2022;2022:8440756.
45.    Kainat Khan MA, Ali F, Faisal S, Rizwan M, Hussain Z, Zaman N, et al. Exploring the therapeutic potential of Hibiscus rosa sinensis synthesized cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi J Biol Sci 2021;28(9): 5157-5167.
46.    Pradeep M, Kruszka D, Kachlicki P, Mondal D, Franklin G. Uncovering the phytochemical basis and the mechanism of plant extract-mediated eco-friendly synthesis of silver nanoparticles using ultra-performance liquid chromatography coupled with a photodiode array and high-resolution mass spectrometry. ACS Sustainable Chem Eng 2021;10(1):562-571.
47.    Parlinska-Wojtan M, Kus-Liskiewicz M, Depciuch J. Sadik O. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using camomile terpenoids as a combined reducing and capping agent. Bioprocess Biosyst Eng. 2016;39:1213-1223.