Nano-selenium supplementation upregulate TLR-7, MyD88, NF-kB, and TRAF6 genes in thymus of Wistar rats following treatment with cyclosporine A

Document Type : Research Paper


1 Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran

2 Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran



Objective(s): Selenium Nanoparticles can modulate the function of the immune system and improve immunity. We investigate the expression of toll-like receptor-7 (TLR-7), myeloid differentiation primary response 88 (MyD88), Nuclear factor kappa B (NF-κB), and TNF receptor associated factor 6 (TRAF6) genes in thymus of Wistar rats following treatment with cyclosporine A (CsA) and Nano-selenium (Nano-Se) supplementation. 
Materials and Methods: Twenty-four male Wistar rats (200-220 grams) were divided into 3 groups of control (n=8), CsA (n=8), and CsA+Nano-Se (n=8). Rats in CsA and CsA+Nano-Se group’s received cyclosporine A and olive oil solution by subcutaneous injection for 10 days at a dose of 5 mg/kg/day. Nano-Se with a dose of 2.5 mg/kg of body weight was gavaged to the CsA+Nano-Se group once a day and 3 times a week. Real-time PCR were used for gene expression of TLR-7, MyD88, NF-kB, and TRAF6 at thymus. 
Results: The result of this study show that CsA significantly decreased expressions of TLR-7, MyD88, NF-kB, and TRAF6 at thymus compared to control group (P<0.05). However, expressions of TLR-7, MyD88, NF-kB, and TRAF6 at thymus in  CsA+ Nano-Se group was significantly increased compared to CsA group (P<0.05). 
Conclusion: Nano-Se supplementation significantly regulated the expression of TLR-7, MyD88, NF-kB and TRAF6 genes in the thymus of rats treated with cyclosporine A. Therefore, Nano-Se supplementation can be recommended to boost immune function after using immunosuppressive drugs. However, more research is needed in the future.


1.  Tan HW, Mo H-Y, Lau AT, Xu Y-M. Selenium species: current status and potentials in cancer prevention and therapy. Int J Mol Sci. 2018;20(1):75-83.
2. Guan B, Yan R, Li R, Zhang X. Selenium as a pleiotropic agent for medical discovery and drug delivery. Int J Nanomedicine. 2018:7(3):90-97.
3. Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;3(3):83-90.
4. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, et al. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine. 2018: 11(1):2107-2128.
5. Zhang J, Wang X, Xu T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci 2008;101(1):22-31.
6. Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, et al. Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin Res. 2011;96(1):49-52.
7. Fajt Z, Drabek J, Steinhauser L, Svoboda M. The significance of pork as a source of dietary selenium—an evaluation of the situation in the Czech Republic. Neuro Endocrinol. Lett. 2009;30(1):17-23.
8. Torres S, Campos V, León C, Rodríguez-Llamazares S, Rojas S, Gonzalez M, et al. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res. 2012;14(1):1-9.
9. Reid ME, Stratton MS, Lillico AJ, Fakih M, Natarajan R, Clark LC, et al. A report of high-dose selenium supplementation: response and toxicities. J Trace Elem Med Biol. 2004;18(1):69-74.
10. Klug H, Petersen D, Moxon A, editors. The toxicity of selenium analogues of cystine and methionine. Proc SD Acad Sci. 1949; 5(1):86-90. 
11. Mahdavi M, Mavandadnejad F, Yazdi MH, Faghfuri E, Hashemi H, Homayouni-Oreh S, et al. Oral administration of synthetic selenium nanoparticles induced robust Th1 cytokine pattern after HBs antigen vaccination in mouse model. J Infect Public Health. 2017;10(1):102-109.
12. Hooshangi P, Kazemzadeh Y, Shirvani H, Sedaghati S, Molanoruzi K. The Effect of Nanoselenium Consumption during High Intensity Interval Training on IL-4 and IFN-β Gene Expression in Thymus Organ of Dexamethasone-Induced Immunosuppressive Rats. JNFH. 2022;10(2):12-18.
13. Abdulnabi BM, Abdalhafid YK, Amrymi RA. The possible protective role of Thymus vulgaris against hepatotoxicity and nephrotoxicity of cyclosporine A. Int J Pharm Life Sci. 2020;11(4):48-53.
14. Wei J, Liu S, Wang K, Sun C, Li S, Liu X, et al. Cyclosporin A acts as a novel insecticide against Cry1Ac-susceptible and-resistant Helicoverpa armigera. Pestic Biochem Phys. 2022;18(8): 83-91.
15. Damoiseaux JG, Beijleveld LJ, van Breda Vriesman PJ. Multiple effects of cyclosporin A on the thymus in relation to T-cell development and autoimmunity. J Clin Immunol. 1997;82(3):197-202. 
16.    Pearse G. Normal structure, function and histology of the thymus. Toxicol Pathol. 2006;34(5):504-514.
17. Chen K, Shu G, Peng X, Fang J, Cui H, Chen J, et al. Protective role of sodium selenite on histopathological lesions, decreased T-cell subsets and increased apoptosis of thymus in broilers intoxicated with aflatoxin B1. FCT. 2013;59(1):446-454.
18. Mirdar S, Kazemzadeh Y, Arabzadeh E, Shirvani H, Hamidian G. The effects of tapering with and without ethanolic extract of Nigella sativa on Hypoxia Inducible Factor-1α and exercise-induced bronchial changes. J Mil Med. 2019;21(2):131-141.
19. Hu X, Chi Q, Liu Q, Wang D, Zhang Y, Li S. Atmospheric H2S triggers immune damage by activating the TLR-7/MyD88/NF-κB pathway and NLRP3 inflammasome in broiler thymus. Chemosphere. 2019;23(7):27-34.
20. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell. 2000;103(2):351-361.
21. Wang J, Wu X, Jiang M, Tai G. Mechanism by which TRAF6 participates in the immune regulation of autoimmune diseases and cancer. Biomed Res Int. 2020;12(1):28-33.
22. Aghaei F, Wong A, Zargani M, Sarshin A, Feizolahi F, Derakhshan Z, et al. Effects of swimming exercise combined with silymarin and vitamin C supplementation on hepatic inflammation, oxidative stress, and histopathology in elderly rats with high-fat diet-induced liver damage. Nutrition. 2023;115(1):1-8.
23. Hozyen HF, Khalil HM, Ghandour RA, Al-Mokaddem AK, Amer M, Azouz RA. Nano selenium protects against deltamethrin-induced reproductive toxicity in male rats. Toxicol Appl Pharmacol. 2020;40(8):74-81.
24. Abou Zaid OAR, El-Sonbaty SM, Barakat W. Ameliorative effect of selenium nanoparticles and ferulic acid on acrylamide-induced neurotoxicity in rats. Ann Med Biomed Sci. 2017;3(2):35-45.
25. Prasad KS, Selvaraj K. Biogenic synthesis of selenium nanoparticles and their effect on As (III)-induced toxicity on human lymphocytes. Biol Trace Elem Res. 2014;15(7):275-283.
26. Ali HF, El-Sayed NM, Ahmed AA, Hanna PA, Moustafa YM. Nano selenium ameliorates oxidative stress and inflammatory response associated with cypermethrin-induced neurotoxicity in rats. Ecotoxicol Environ Saf. 2020;195 (1):79-84.
27. Zargani M, Ramirez-Campillo R, Arabzadeh E. Swimming and L-arginine loaded chitosan nanoparticles ameliorates aging‐induced neuron atrophy, autophagy marker LC3, GABA and BDNF-TrkB pathway in the spinal cord of rats. Pflug. Arch Eur J Physiol. 2023;475(5):621-635.
28. Shirvani H, Rahmati-Ahmadabad S, Broom DR, Mirnejad R. Eccentric resistance training and β-hydroxy-β-methylbutyrate free acid affects muscle PGC-1α expression and serum irisin, nesfatin-1 and resistin in rats. J Exp Biol. 2019;222(10):1-8.
29. Bhattacharya S. Protective role of the essential trace elements in the obviation of cadmium toxicity: glimpses of mechanisms. Biol Trace Elem Res. 2022;200(5):2239-2246.
30. Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kot AM. Effect of selenium on growth and antioxidative system of yeast cells. Mol Biol Rep. 2019;46(1):1797-1808.
31. Yan J-K, Qiu W-Y, Wang Y-Y, Wang W-H, Yang Y, Zhang H-N. Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties. Carbohydr. Polym. 2018;179 (1):19-27.
32. Song X, Chen Y, Zhao G, Sun H, Che H, Leng X. Effect of molecular weight of chitosan and its oligosaccharides on antitumor activities of chitosan-selenium nanoparticles. Carbohydr Polym. 2020;23(1):1-9.
33. Jin M, Lv P, Chen G, Wang P, Zuo Z, Ren L, et al. Klotho ameliorates cyclosporine A–induced nephropathy via PDLIM2/NF-kB p65 signaling pathway. BBRC. 2017;486(2):451-457. 
34. Sarhan EAM, Hussein SA, Elsenosi Y, Esmael TEA, Amin A. Thymoquinone suppressed Cyclosporine A-induced Nephrotoxicity in rats via antioxidant activation and inhibition of inflammatory and apoptotic signaling pathway. BVMJ. 2020;39(1):40-46.
35. Shirvani H, Rahimi M, Rostamkhani F. Effect of a karate competition on indicators of inflammation and muscletissue injury in soldier’s karate-ka. Mil Med. 2015;17(3):137-143.
36. Shen H, Ji Y, Xiong Y, Kim H, Zhong X, Jin MG, et al. Medullary thymic epithelial NF–kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice. PNAS. 2019;116(38):19090-19097.
37. Ge J, Guo K, Zhang C, Talukder M, Lv M-W, Li J-Y, et al. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/IκB pathway in heart. Sci. Total Environ. 2021;77(3):1-10.
38. Heil F, Ahmad‐Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T, et al. The Toll‐like receptor 7 (TLR7)‐specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol. 2003;33(11):2987-2997.
39. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway. Nat. Immunol. 2002;3(2):196-200.
40. Bai Y, Zhang R, Liu Q, Guo R, Li G, Sun B, et al. Selenium deficiency causes inflammatory injury in the bursa of fabricius of broiler chickens by activating the toll-like receptor signaling pathway. Biol Trace Elem Res. 2022:12(1): 1-10.
41. Cho M-L, Ju J-H, Kim H-R, Oh H-J, Kang C-M, Jhun J-Y, et al. Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts. Immunol Lett. 2007;108(2):121-128.
42. Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor‐associated factor 6 (TRAF 6) regulation of development, function, and homeostasis of the immune system. Immunol Rev. 2015;266(1):72-92.