Green synthesis, characterization, and evaluation of antimicrobial and antioxidant activities of CuO, Co3O4, and CuO-Co3O4 Nano system using Moringa stenopetala plant leaf extracts

Document Type : Research Paper

Authors

Adama Science and Technology University, School of Applied Natural Science, Department of Applied Chemistry, Adama, Ethiopia

Abstract

Objective(s): The purpose of this study was to synthesize copper oxide nanoparticles (CuO NPs), cobalt oxide nanoparticles (Co3O4 NPs), and CuO-Co3O4 nano system using Moringa stenopetala plant leaf extract. These nanoparticles were specifically developed for their antioxidant and antibacterial properties.
Materials and Methods: The nanoparticles were synthesized by a green synthesis approach using M. stenopetala leaf extract. Comprehensive characterization using spectroscopic techniques such as X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and thermogravimetric analysis (TGA) was executed.
Results: UV-Vis analysis revealed an energy bandgap of 3.32 eV for CuO NPs, 3.36 eV for Co3O4 NPs, and 3.66 eV for CuO-Co3O4 nano system. XRD analysis revealed that CuO NPs have a monoclinic crystal structure with an average crystallite size of 11.59 nm, whereas Co3O4 NPs have a cubic crystal structure with an average crystallite size of 12.25 nm. The CuO-Co3O4 nano system exhibited an average crystal size of 9.53 nm. The SEM images showed inhomogeneous composition and large granular particles of CuO NPs, inhomogeneous cubic shape and size with encapsulation and hydrogen bonding aggregation of Co3O4 NPs, and particle heterogeneity. The CuO-Co3O4 nano system. FT-IR analysis confirmed the presence of bioactive molecules such as flavonoids, tannins, terpenoids, steroids, glycosides, saponins, and phenols that actively participate in the synthesis process.
Conclusion: The synthesized CuO-Co3O4 nano system showed superior inhibitory effects against the selected bacterial strains compared to CuO NPs and Co3O4 NPs. Furthermore, they showed excellent antioxidant activity. These results highlight the significant potential of CuO-Co3O4 nano system for a wide range of applications due to their remarkable bacterial inhibition and radical scavenging properties.
 

Keywords


1. Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small. 2005;1(2):172-179.
2.    Mansoori GA, Soelaiman TAF. Nanotechnology, An Introduction for the Standards Community. Nanomedicine (Lond). 2005;2(6):1-21.
3.    Mungondori HH, Ramujana S, Katwire DM, Taziwa RT. Synthesis of a novel visible light responsive γ-Fe2O3/SiO2/C-TiO2 magnetic nanocomposite for water treatment. Water Sci Technol. 2018;78(12):2500-2510.
4.    Mauricio MD, Marchio P, Valles SL, Aldasoro M, Herance JR, Rocha M, et al. Review Article Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. Oxid Med Cell Longev. 2018;(8):3-4.
5.    Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, et al. Application of silicon nanoparticles in agriculture. Biotech. 2019;9(3):90
6.    Zhang D, Ma X, Gu Y, Huang H, Zhang G. Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front Chem. 2020; (8): 799
7.    Mutukwa D, Taziwa R, Khotseng LE. A Review of the Green Synthesis of ZnO Nanoparticles Utilising Southern African Indigenous Medicinal Plants. Nanomaterials. 2022; 12(19), 3456.
8.    Riaz T, Nayyar S, Shahzadi T, Zaib M, Shahid S, Mansoor S, et al. The Biogenic Synthesis of Cobalt Monometallic and Cobalt-Zinc Bimetallic Nanoparticles Using Cymbopogan citratus L. Leaf Extract and Assessment of Their Activities as Efficient Dye Removal and Antioxidant Agents. Research Gate. 2022 Oct;12(10):2505.
9.    Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants. 2021;10(9):1-39. 
10.    Demssie Dejen K, Kibret DY, Mengesha TH, et al. Green synthesis of silver and cobalt oxide nanoparticles using Croton macrostachyus plant extract and evaluation of their antibacterial activity. 2024;11(1):80-92.
11.    Shehu Z, Lamayi W, Danbature D+, Magaji B, Muhammad, Adam M, et al. Green Synthesis and Nanotoxicity Assay of Copper-Cobalt Bimetallic Nanoparticles as a Novel Nanolarvicide for Mosquito Larvae Management. Int J Biotechnol. 2020;9(2):99-104.
12.    Panchal P, Parvez N. Phytochemical analysis of medicinal herb (Ocimum sanctum). Int J Nanomater Nanotechnol Nanomedicine. 2019;5(2):8-11.
13.    Andualem WW, Sabir FK, Mohammed ET, Belay HH, Gonfa BA. Synthesis of copper oxide nanoparticles using plant leaf extract of Catha edulis and its antibacterial activity. J Nanotechnol. 2020;(20):1-10
14.    Benhammada A, Trache D. Green synthesis of CuO nanoparticles using Malva sylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior. J Therm Anal Calorim. 2022;147(2):1355-1370.
15.    Govindasamy R, Raja V, Singh S, Govindarasu M, Sabura S, Rekha K, Rajeswari VD, Alharthi SS, Vaiyapuri M, Sudarmani R, Jesurani S, Venkidasamy B, et al. Green Synthesis and Characterization of Cobalt Oxide Nanoparticles Using Psidium guajava Leaves Extracts and Their Photocatalytic and Biological Activities. Molecules. 2022;27(17):1-16.
16.    Aragaw SG, Sabir FK, Andoshe DM, Zelekew OA. Green synthesis of p-Co3O4/n-ZnO composite catalyst with Eichhornia crassipes plant extract mediated for methylene blue degradation under visible light irradiation. Mater Res Express. 2020;7(9):1-11
17.    Abebe B, Murthy HCA, Zereffa EA, Adimasu Y. Synthesis and characterization of ZnO/PVA nanocomposites for antibacterial and electrochemical applications. Inorg Nano-Metal Chem. 2021;51(8):1127-1138.
18.    Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, et al. Green synthesis of silver, gold, and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog. 2016 ;(101):1-11. 
19.    Das D, Jyoti B. Synthesis, characterization and biological applications of cobalt oxide (Co3O4) nanoparticles. Chem Phys Impact. 2023;6(December 2022):100137.
20.    Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Nagabhushana H. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. Integr Med Res. 2018;9(1):7-12. 
21.    Akintelu SA, Folorunso AS, Folorunso FA, Oyebamiji AK. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon. 2020;6(7):04508.
22.    Shelke HD, Machale AR, Survase AA, Pathan HM, Lokhande CD, Lokhande AC, Shaikh SF, Rana AuHS, Palaniswami M.. Multifunctional Cu2SnS3 nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Materials. 2022; (9):15.
23.    Govindasamy R, Raja V, Singh S, Govindarasu M, Sabura S, Rekha K, Rajeswari VD, Alharthi SS, Vaiyapuri M, Sudarmani R, et al. Green synthesis and characterization of cobalt oxide nanoparticles using Psidium guajava leaves extracts and their photocatalytic and biological activities. Molecules. 2022. (17):27.
24.    Meghdadi S, Amirnasr M, Zhiani M, Jallili F, Jari M, Kiani M. Facile synthesis of cobalt oxide nanoparticles by thermal decomposition of cobalt(II) carboxamide complexes: Application as oxygen evolution reaction electrocatalyst in alkaline water electrolysis. Electrocatalysis. 2017;8(2):122-131.
25.    Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surfaces B Biointerfaces. 2013;(101):430-433.
26.    Krishna BA, Kumar PN, Prema P. Green synthesis of copper oxide nanoparticles using Cinnamomum malabatrum leaf extract and its antibacterial activity. Indian J Chem Technol. 2020;27(6):525-530.
27.    Dalvand A, Gholami M, Mahvi AH, Dehghani MH, Dalvand K, Jafari AJ, et al. Comparison of Moringa stenopetala seed extract as a clean coagulant with Alum and Moringa stenopetala-Alum hybrid coagulant to remove direct dye from Textile Wastewater. Environ Sci Pollut Res Int. 2016;23(16):16396-405.
28.    Varughese A, Kaur R, Singh P. Green synthesis and characterization of copper oxide nanoparticles using Psidium guajava leaf extract. IOP Conf Ser Mater Sci Eng. 2020; 961(1):012011.
29.    Diallo A, Beye AC, Doyle TB, Park E, Maaza M. Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: Physical properties. Green Chem Lett Rev. 2015;(8):3-4, 30-36. 
30.    Bhargava R, Khan S, Ahmad N, Mohsin M, Ansari N. Investigation of structural, optical and electrical properties of Co3O4 nanoparticles. AIP Conf Proc. 2018;(030034): 1–5
31.    Peddi P, Ptsrk PR, Rani NU, Tulasi SL. Green synthesis, characterization, antioxidant, antibacterial, and photocatalytic activity of Suaeda maritima (L.) Dumort aqueous extract-mediated copper oxide nanoparticles. J Genet Eng Biotechnol. 2021;(19):1
32.    Hajri AK, Albalawi MA, Alsharif I, Jamoussi B. Marine algae extract (Grateloupia sparsa) for the green synthesis of Co3O4 NPs: Antioxidant, antibacterial, anticancer, and hemolytic activities. Bioinorg Chem Appl. 2022; (2022): 1–11.