The state of the art metal nanoparticles in drug delivery systems: A comprehensive review

Document Type : Review Paper


1 Department of Chemistry, Amirkabir University of Technology, Tehran, Iran

2 Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran



There has been a growing curiosity and enthusiasm surrounding recent advancements in nanotechnology, electromagnetism, and optics. This interdisciplinary collaboration encompasses fields such as nanomaterials, nanoelectronics, and nanobiotechnology, which often overlap in their applications. One area that has attracted significant attention is the use of metal nanoparticles (MNPs), which has resulted in notable advancements in medicine. MNPs hold the promise of significantly boosting drug delivery efficacy, reducing unwanted side effects, and enhancing delivery precision. They also have applications in diagnostics, the development of biocompatible materials, and the exploration of nutraceuticals. Using metal nanoparticles in drug delivery provides benefits such as increased stability, prolonged circulation time, enhanced distribution, and precise targeting. The field of nanobiotechnnolgy has facilitated the creation of eco-friendly approaches, referred to as green synthesis, for the production of MNPs. MNPs offer improved stability and targeted release in drug delivery, while also providing a more sustainable alternative to chemical synthesis. This review aims to address the challenges and prospects of utilizing MNPs in drug delivery, with a specific focus on sustainable approaches for fabricating and modifying metal nanocarriers. It also explores the application of various MNPs in drug delivery systems (DDSs).


1. Ibrahim K, Khalid S, Idrees K. Nanoparticles: properties, applications and toxicities. Arab J. Chem. 2019; 12: 908-931.
2. Salata OV. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol.2004; 2: 1-6.
3. Wang E C, Wang A Z. Nanoparticles and their applications in cell and molecular biology. Integr Biol. 2014;6: 9-26.
4. Nath D, BanerjeeP. Green nanotechnology  a new hope for medical biology. EnvironToxicol Pharmacol. 2013; 36: 997-1014.
5. Felice B, PrabhakaranMP, Rodríguez AP, Ramakrishna S. Drug delivery vehicles on a nano-engineering perspective. Mater. Sci. Eng. 2014 ; 41: 178-195.
6. Choudhury S R, Ordaz J, Lo C L, Damayanti N P, Zhou F, Irudayaraj J. Zinc oxide nanoparticles-induced reactive oxygen species promotes multimodal cyto- and epigenetic toxicity. Toxicol. Sci. 2017; 156: 261-274.
7. Qadri S, HaikY, Mensah BE, Bashir G, Fernandez CMJ. Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine: Nanotechnology, Biology and Medicine. 2017; 13: 2241-2250.
8. Ramadi K B, Mohamed Y A, Al-Sbiei, A, Almarzooqi S, Bashir G, Al Dhanhani A. Acute systemic exposure to silver-based nanoparticles induces hepatotoxicity and NLRP3-dependent inflammation. Nanotoxicol. 2016; 10:1061-1074.
9. Martinho N, Damge C, Reis, CP. Recent advances in drug delivery systems. J. Biomater. Nanobiotechnol. 2011; 2:510-526.
10. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomed.2017; 12: 2957-2978.
11.Jinjun S, Alexander V R, Omid F C, Robert L. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010; 10:3223-3230.
12.Qadri S, Abdulrehman T, Azzi J, Mansour S, Haik Y. AgCuB nanoparticle eradicates intracellular S. aureus infection in bone cells: in vitro. Emerg. Mater. 2019; 2: 219-231.
13. Parveen S, MisraR, Sahoo S K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics, and imaging. Nanomedicine Nanotech Biol Med. 2012; 8: 147-166.
14. Noruzi M, ZareD, Khoshnevisan K, Davoodi D. Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim. Acta A.2016; 79: 1461-1465.
15. Al Tamimi, S, Ashraf S, Abdulrehman T, Parray A, Mansour S A, Haik Y. Synthesis and analysis of silver-copper alloy nanoparticles of different ratios manifest anticancer activity in breast cancer cells. Cancer Nanotech. 2020; 11:1-16.
16. Iravani S, Varma RS. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019; 21(18): 4839-4867.
17 Karami MH, Abdouss M, Rahdar A, Pandey S. Graphene quantum dots: background, synthesis methods, and applications as nanocarrier in drug delivery and cancer treatment: an updated review. Inorg Chem Commun. 2024;161: 112032. 
18. Ľudmila H, Michal J, Andrea Š, Aleš H. Lignin, potential products and their market value. Wood Res. 2015; 60(6): 973-986.
19. Tang Y, Chen B, Hong W, Chen L, Yao L, Zhao Y, et al. ZnO nanoparticles induced male reproductive toxicity based on the effects on the endoplasmic reticulum stress signaling pathway. Int J Nanomedicine. 2019; 14: 9563-9576. 
20. Wsoo MA, Shahir S, Mohd Bohari SP, Nayan NHM, Razak SIA. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: a new perspective. Carbohydr Res. 2020; 491: 107978.
21. Liu R, Dai L, Xu C, Wang K, Zheng C, Si C. Lignin-based microand nanomaterials and their composites in biomedical applications. ChemSusChem. 2020; 13(17): 4266-4283.
22. Spiridon I. Biological and pharmaceutical applications of lignin and its derivatives: a mini-review. Cellulose Chem Technol. 2018; 52(7- 8): 543-550.
23. Roshangar L, Rad JS, Kheirjou R, Khosroshahi AF. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing. J Tissue Eng Regen Med. 2021; 15(6): 546-555.
24. Li YY, Wang B, Ma MG, Wang B. Review of recent development on preparation, properties, and applications of cellulose-based functional materials. Int J Polym Sci. 2018; 2018: 1-18.
25. Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: challenges and opportunities. Int J Biol Macromol. 2021; 178: 193-228.
26. Khalil HPSA, Jummaat F, Yahya EB, Olaiya NG, Adnan AS, Abdat M, et al. A Review on micro- to nanocellulose biopolymer scaffold forming for tissue engineering applications. Polymers (Basel). 2020; 12(9): 2043.
27. Unni R, Varghese R, Bharat Dalvi Y, Augustine R, MS L, Kumar Bhaskaran Nair H, et al. Characterization and in vitro biocompatibility analysis of nanocellulose scaffold for tissue engineering application. J Polym Res. 2022; 29(8): 358.
28. Madni A, Kousar R, Naeem N, Wahid F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J Bioresour Bioprod. 2021; 6(1): 11-25.
29. Hickey RJ, Pelling AE. Cellulose Biomaterials for tissue engineering. Front Bioeng Biotechnol. 2019; 7: 45.
30. Dugan JM, Gough JE, Eichhorn SJ. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine (Lond). 2013; 8(2): 287-298.
30. Dugan JM, Gough JE, Eichhorn SJ. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine (Lond). 2013; 8(2): 287-298.
31. Mohite BV, Patil SV. A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem. 2014; 61(2): 101- 110.
32. Duval A, Lawoko M. A review on lignin-based polymeric, micro-and nano-structured materials. React Funct Polym. 2014; 85: 78-96.
33. Chio C, Sain M, Qin W. Lignin utilization: a review of lignin depolymerization from various aspects. Renewable Sustainable Energy Rev. 2019; 107: 232-249.
34. Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR. Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol. 2016; 42: 40-53.
35. Liang R, Zhao J, Li B, Cai P, Loh XJ, Xu C, et al. Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials. 2020; 230: 119601.
36. Cai MH, Chen XY, Fu LQ, Du WL, Yang X, Mou XZ, et al. Design and development of hybrid hydrogels for biomedical applications: recent trends in anticancer drug delivery and tissue engineering. Front Bioeng Biotechnol. 2021; 9: 630943.
37. Mahendiran B, Muthusamy S, Selvakumar R, Rajeswaran N, Sampath S, Jaisankar SN, et al. Decellularized natural 3D cellulose scaffold derived from Borassus flabellifer (Linn.) as extracellular matrix for tissue engineering applications. Carbohydr Polym. 2021; 272: 118494.
38. Subia B, Kundu J, Kundu SC. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Eng. 2010; 141: 13-18.
39. Chouhan D, Dey N, Bhardwaj N, Mandal BB. Emerging and inno- vative approaches for wound healing and skin regeneration: current status and advances. Biomaterials. 2019; 216: 119267.
40. Fishman JA. Infection in Organ transplantation. Am J Transplant. 2017; 17(4): 856-879.
41. de Isla N, Huseltein C, Jessel N, Pinzano A, Decot V, Magdalou J, et al. Introduction to tissue engineering and application for cartilage engineering. Biomed Mater Eng. 2010; 20(3): 127-133.
42. Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001; 52: 443-451.
43. Ige OO, Umoru LE, Aribo S. Natural products: a minefield of biomaterials. Int Sch Res Notices. 2012; 2012: 983062.
44. Orlando G, Baptista P, Birchall M, De Coppi P, Farney A, Guimaraes-Souza NK, et al. Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transpl Int. 2011; 24(3): 223-232.
45. Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, et al. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater. 2019; 29(36): 1903279.
46. Alzagameem A, Khaldi HBE, Kamm B, Schulze M. Lignocellulosic biomass for energy, biofuels, biomaterials, and chemicals. Springer; 2018: 95-132.
47. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl. 2011; 50(24): 5438-5466.
48. Deoliveira BHG, Dasilva RR, DaSilva BH, Tercjak A, Gutierrez J, Lustri WR. A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym. 2016; 153: 406-420.
49. Safari B, Aghanejad A, Kadkhoda J, Aghazade M, Roshangar L, Davaran S. Biofunctional phosphorylated magnetic scaffold for bone tissue engineering. Colloids Surf B Biointerfaces. 2022; 211: 112284.
50. Nour S, Imani R, Chaudhry GR, Sharifi AM. Skin wound healing assisted by angiogenic targeted tissue engineering: A comprehensive review of bioengineered approaches. J Biomed Mater Res A. 2021; 109(4): 453-478.
51. Bedian L, Villalba RAM, Hernández VG, Parra SR, Iqbal HM. Bio-based materials with novel characteristics for tissue engineering applications - a review. Int J Biol Macromol. 2017; 98: 837-846.
52. Behera SS, Das U, Kumar A, Bissoyi A, Singh AK. Chitosan/ TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: application in wound dressing and skin regeneration. Int J Biol Macromol. 2017; 98: 329-340.
53. Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, et al. Bacterial cellulosebased composite scaffolds for biomedical applications: a review. ACS Sustainable Chem Eng. 2020; 8(20): 7536-7562.
54. Talikowska M, Fu X, Lisak G. Application of conducting polymers to wound care and skin tissue engineering: a review. Biosens Bioelectron. 2019; 135: 50-63.
55. Machingal MA, Corona BT, Walters TJ, Kesireddy V, Koval CN, Dannahower A, et al. A tissue-engineered muscle repair construct for functional restoration of an irrecoverable muscle injury in a murine model. Tissue Eng Part A. 2011; 17(17-18): 2291-2303.
56.Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011; 6(1): 13-22.
57. Jahangirian H, Lemraski EG, Rafiee MR, Webster TJ. A review of using green chemistry methods for biomaterials in tissue engineering. Int J Nanomedicine. 2018; 13: 5953-5969.
58. Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003; 5: 293-347.
59. Diaz GL, GonzalezPI, Millan R, Da SCA, BugalloCA, Campos F. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydr Polym. 2022; 278: 118924.
60. Karami MH, Abdouss M.A General Evaluation of the Cellular Role in Drug Release: A Clinical Review Study. Clin J Obstet Gynecol. 2024; 7: 042-050. 
61. Zahra N, Abdouss M. Electrospun nanofibers using β-cyclodextrin grafted chitosan macromolecules loaded with indomethacin as an innovative drug delivery system.Int. J. Biol. Macromol.2023; 233: 123518.
62.Shadabfar M, Ehsani M, Khonakdar HA, Abdouss M. Waterborne conductive carbon paste with an eco-friendly binder. Cellulose.2023;30: 1759-1772.
63. Shahriari MH, Hadjizadeh A, Abdouss M. Advances in self-healing hydrogels to repair tissue defects. Polym. Bull. 2023;80:1155-1177.
64. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials. 2015;8:7278–7308.
65. Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S, Sahoo AK, Samanta SK. Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review. Biotechnol Rep. 2020;25:e00427.
66. Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK. Biological Synthesis of Metallic Nanoparticles: Plants, Animals and Microbial Aspects. Nanotechnol Environ Eng. 2017;2:18.
67. Pedroso-Santana S, Fleitas-Salazar N. The Use of Capping Agents in the Stabilization and Functionalization of Metallic Nanoparticles for Biomedical Applications. Part. Part. Syst. Charact. 2023;40:2200146.
68. Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Topics Curr. Chem. 2022;380:13.
69. Karami MH, Pourmadadi M, Abdouss M, Kalaee MR, Moradi O, Rahdar A. Novel chitosan/γ-alumina/ carbon quantum dot hydrogel nanocarrier for targeted drug delivery. Int J Biol Macromol.2023; 251:126280.
70. Valdivia V, Gimeno-Ferrero R, Leal MP, Paggiaro C, Fernandez-Romero AM, Gonzalez-Rodriguez ML, Fernandez I. Biologically Relevant Micellar Nanocarrier Systems for Drug Encapsulation and Functionalization of Metallic Nanoparticles. Nanomaterials. 2022;12:1753.
71. Yang Z, Sun Z, Ren Y, Chen X, Zhang W, Zhu X, et al. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (Review). Mol Med Rep. 2019;20:5–15.
72. Chen X-J, Sanchez-Gaytan BL, Qian Z, Jung Park S. Noble metal nanoparticles in DNA detection and delivery. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2012;4(3):273–290.
73. Venkatesh N. Metallic nanoparticle: a review. Biomed J Sci Tech Res. 2018;4:3765–3775.
74. Schirrmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int J Oncol. 2019;54(2):407–419.
75. Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current Challenges in Cancer Treatment. Clin Ther. 2016 Jul;38(7):1551-66. 
76. Sun C, Veiseh O, Gunn J, Fang C, Hansen S,Lee D. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small. 2008;4(3):372–379.
77. Shenoy D, Fu W, Li J, et al. Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine. 2006;1(1):51–57.
78. Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS PharmSciTech. 2014;15(5):1345–1354.
79. Mortezaee K, Najafi M, Samadian H, Barabadi H, Azarnezhad A, Ahmadi. Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem Biol Interact. 2019;312:108814.
80. Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 2012;3(4):457–478.
81. Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19(5):566–575.
82. Khoshnevisan K, Daneshpour M, Barkhi M,  Gholami M, Samadian H, Maleki H,  et al. The promising potentials of capped gold nanoparticles for drug delivery systems. J Drug Target. 2018;26(7):525–532.
83. Massoumi B, Abbasian M, Esfahlan R J, Motamedi S, Samadian H,Rezaei A R, et al. PEGylated hollow pH-responsive polymeric nanocapsules for controlled drug delivery. Polym Int. 2020;69(5):519–527.
84. Navya P N, Kaphle A, Srinivas S P, Bhargava SK, Rotello VC, Daima H K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6: 23.
85. Prieto M, Arenal R, Henrard L, Gomez L,  Sebastian V,Arruebo M . Morphological tunability of the plasmonic response: from hollow gold nanoparticles to gold nanorings. J Phys Chem C. 2014;118(49): 28804–28811
86. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6): 673–692.
87. Karami M H, Abdouss M . Assessing Particle Size and Surface Charge in Drug Carrier Nanoparticles for Enhanced Cancer Treatment: A Comprehensive Review Utilizing DLS and Zeta Potential Characterization. PSPRJ.2024; 5(3): 000615.
88. Jin Y, Li Y, Ma X, Zha Z, Shi L, Tian J, Dai Z. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomater. 2014;35(22):5795–5804.
89. Zelasko-Leon DC, Fuentes CM, Messersmith PB. MUC1-targeted cancer cell photothermal ablation using bioinspired gold nanorods. PLoS One. 2015;10(7):e0128756.
90. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10(6):787–800.
91. Karami MH, Abdouss M, Cutting-edge tumor nanotherapy: Advancements in 5-fluorouracil Drug-loaded chitosan nanoparticles, Inorg Chem Commun.2024:112430.
92. Torres TE, Lima E, Calatayud MP, Sanz B, Ibarra A, Fernández-Pacheco R, Mayoral A, Marquina C, Ibarra MR, Goya GF. The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Sci Rep. 2019;9(1):1–11.
93. Prasad N, Rathinasamy K, Panda D, Bahadur D. Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-Mn x Fe 2–x O 3 synthesized by a single step process. J Mater Chem. 2007;17(48):5042–5051.
 94. Karami MH, Abdouss M, Karami M , Evaluation of in vitro and ex vivo models for studying the effectiveness of vaginal drug systems in controlling microbe infections: A systematic review. Clin J Obst Gynecol.2023; 6: 201-215.
95. Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater. 1999;194(1–3):185–196.
96. Hilger I, Andra W, Hergt R, Hiergeist R, Schubert H, Kaiser WA. Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology. 2001;218(2):570–575.
97.Hilger I, Hiergeist R, Hergt R, Winnefeld K, Schubert H, Kaiser WA. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Invest Radiol. 2002;37(10):580–586.
98.  Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, Von Deimling A, Waldoefner N, Felix R. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007;81(1):53–60.
99. DeNardo SJ, DeNardo GL, Natarajan A, Miers LA, Foreman AR, Gruettner C, Adamson GN, Ivkov R. Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF–induced thermoablative therapy for human breast cancer in mice. J Nucl Med. 2007;48(3):437–444.
100. Karami MH, Abdouss M, Recent advances of carbon quantum dots in tumor imaging. Nanomed J.2024; 11(1): 13-35. 
101. Majeed J, Pradhan L, Ningthoujam RS, Vatsa RK, Bahadur D, Tyagi AK. Enhanced specific absorption rate in silanol functionalized Fe3O4 core–shell nanoparticles: Study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells. Colloids Surf B Biointerfaces. 2014;122:396–403.
102. Rana S, Jadhav NV, Barick K, Pandey B, Hassan P. Polyaniline shell crosslinked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells. Dalton Trans. 2014;43(32):12263–12271.
103. Makridis A, Topouridou K, Tziomaki M, Sakellari D, Simeonidis K, Angelakeris M, Yavropoulou MP, Yovos JG, Kalogirou O. In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. J Mater Chem B. 2014;2(47):8390–8398.
104. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharm J. 2016;24:473
105. Noor S, Al-Shamari A. High photocatalytic performance of ZnO and ZnO/CdS nanostructures against reactive blue 4 dye. J Med Pharm Chem Res. 2023;5(9):776-793.
106. Ibrahim Arif A. Biosynthesis of copper oxide nanoparticles using Aspergillus niger extract and their antibacterial and antioxidant activities. J Med Pharm Chem Res. 2023;5(7):598-608.
107. Moayeripour SS, Behzadi R. Experimental investigation of the effect of titanium nanoparticles on the properties of hydrophobic self-cleaning film. J Med Pharm Chem Res. 2023;5(4):303-316.
108. Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A,M. Darroudi M. Eco-friendly biosynthesis of nickel oxide nanoparticles mediated by okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties. J Clust Sci. 2019;30:1425-1434.