A review of topical micro- and nanoemulsions for common skin diseases

Document Type : Review Paper


1 Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran

2 Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran

3 Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran

4 Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

5 Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

6 Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

7 Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran

8 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran

9 Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran



Microemulsions (MEs) and nanoemulsions (NEs) are dispersions of two immiscible liquids which are usually transparent/translucent. Several reports are available on uses of MEs/NEs to increase efficacy of the loaded active ingredient(s) in topical dosage forms. This review aims to describe brief applications of MEs/NEs in common skin diseases as well as skincare products. Advantages of MEs/NEs in comparison with the traditional bulk form, including their improved efficacy and safety, have been discussed to highlight the importance of use of such delivery systems. The review briefs mechanism of action of MEs/NEs in enhancing delivery of the cargo. Furthermore, applications of MEs/NEs in common skin diseases including infectious rashes, pigmentation disorders (hyperpigmentaion and hypopigmentation), wound healing, skin cancers and scaling patches and plaques/papulosquamous disorders (psoriasis, atopic dermatitis and acne) have been discussed. MEs/NEs in skin care products have also been reviewed here.


1.    Abedinpour N, Ghanbariasad A, Taghinezhad A, Osanloo M. Preparation of nanoemulsions of mentha piperita essential oil and investigation of their cytotoxic effect on human breast cancer lines. Bionanoscience. 2021;11(2):428-436.
2.    Yukuyama M, Ghisleni D, Pinto T, Bou‐Chacra N. Nanoemulsion: process selection and application in cosmetics–a review. Int J Cosmet Sci. 2016;38(1):13-24.
3.    Yousefpoor Y, Esnaashari SS, Baharifar H, Mehrabi M, Amani A. Current challenges ahead in preparation, characterization, and pharmaceutical applications of nanoemulsions. Wiley Interdiscip. Rev Nanomed Nanobiotechnol. 2023;15(6):e1920.
4.    Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2000;45(1):89-121.
5.    Solans C, Esquena J, Forgiarini AM, Uson N, Morales D, Izquierdo P, et al. Nano-emulsions: formation, properties, and applications. Surfactant science series. 2003:525-554.
6.    Callender SP, Mathews JA, Kobernyk K, Wettig SD. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int. J. Pharm. X. 2017;526(1-2):425-442.
7.    Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv. 2005;2(4):297-310.
8.    Gutiérrez J, González C, Maestro A, Solè I, Pey C, Nolla J. Nano-emulsions: New applications and optimization of their preparation. Curr Opin Colloid Interface Sci 2008;13(4):245-51.
9.    Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 2004;280(1-2):241-251.
10.    Komaiko J, Sastrosubroto A, McClements DJ. Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids. Food. Chem. 2016;203:331-339.
11.    Sutradhar KB, Amin ML. Nanoemulsions: Increasing possibilities in drug delivery. Eur. J. Nanomed. 2013;5(2):97-110.
12.    Sonneville-Aubrun O, Simonnet J-T, L’alloret F. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci. 2004;108:145-149.
13.    Sintov AC. Transdermal delivery of curcumin via microemulsion. Int J Pharm. 2015;481(1-2):97-103.
14.    Azizi M, Esmaeili F, Partoazar A, Ejtemaei Mehr S, Amani A. Efficacy of nano-and microemulsion-based topical gels in delivery of ibuprofen: An in vivo study. J Microencapsul. 2017;34(2):195-202.
15.    Valizadeh A, Shirzad M, Pourmand MR, Farahmandfar M, Sereshti H, Amani A. Levofloxacin nanoemulsion gel has a powerful healing effect on infected wound in streptozotocin-induced diabetic rats. Drug Deliv Transl Res. 2021;11(1):292-304.
16.    Ghiasi Z, Esmaeli F, Aghajani M, Ghazi-Khansari M, Faramarzi MA, Amani A. Enhancing analgesic and anti-inflammatory effects of capsaicin when loaded into olive oil nanoemulsion: An in vivo study. Int J Pharm X. 2019;559:341-347.
17.    Amani A, York P, Chrystyn H, Clark BJ. Evaluation of a nanoemulsion-based formulation for respiratory delivery of budesonide by nebulizers. AAPS PharmSciTech. 2010;11(3):1147-1151.
18.    Kamali H, Abbasi S, Amini MA, Amani A. Investigation of factors affecting aerodynamic performance of nebulized Nanoemulsion. Iran J Pharm Res. 2016;15(4):687-693.
19.    Pawar VK, Panchal SB, Singh Y, Meher JG, Sharma K, Singh P, et al. Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response. J Control Release. 2014;196:295-306.
20.    Pineros I, Slowing K, Serrano DR, de Pablo E, Ballesteros MP. Analgesic and anti-inflammatory controlled-released injectable microemulsion: Pseudo-ternary phase diagrams, in vitro, ex vivo and in vivo evaluation. Eur J Pharm Sci. 2017;101:220-227.
21.    Khani S, Keyhanfar F, Amani A. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Deliv. 2016;23(6):2035-2043.
22.    Bhanushali R, Gatne M, Gaikwad R, Bajaj A, Morde M. Nanoemulsion based intranasal delivery of antimigraine drugs for nose to brain targeting. Indian J Pharm Sci. 2009;71(6):707.
23.    Jaiswal M, Dudhe R, Sharma P. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123-127.
24.    Zarenezhad E, Agholi M, Ghanbariasad A, Ranjbar A, Osanloo M. A nanoemulsion-based nanogel of Citrus limon essential oil with leishmanicidal activity against Leishmania tropica and Leishmania major. J Parasit Dis. 2021;45(2):441-448.
25.    Maleki H, Azadi H, Yousefpoor Y, Doostan M, Doostan M, Farzaei M H. Encapsulation of ginger extract in nanoemulsions: Preparation, characterization and in vivo evaluation in rheumatoid arthritis. J Pharm Sci. 2023;112(6):1687-1697.
26.    Shokri A, Saeedi M, Fakhar M, Morteza-Semnani K, Keighobadi M, Teshnizi SH, et al. Antileishmanial activity of Lavandula angustifolia and Rosmarinus officinalis essential oils and nano-emulsions on Leishmania major (MRHO/IR/75/ER). Iran J Parasit. 2017;12(4):622.
27.    Azami SJ, Amani A, Keshavarz H, Najafi-Taher R, Mohebali M, Faramarzi MA, et al. Nanoemulsion of atovaquone as a promising approach for treatment of acute and chronic toxoplasmosis. Eur J Pharm Sci. 2018;117:138-146.
28.    Esmaeili F, Baharifar H, Amani A. Improved Anti-inflammatory Activity and Minimum Systemic Absorption from Topical Gels of Ibuprofen Formulated by Micelle or Nanoemulsion. J Pharm Innov. 2022:1-8.
29.    Najafi-Taher R, Ghaemi B, Amani A. Delivery of adapalene using a novel topical gel based on tea tree oil nano-emulsion: Permeation, antibacterial and safety assessments. Eur J Pharm Sci. 2018;120:142-151.
30.    Stuchlík M, Zak S. Lipid-based vehicle for oral drug delivery. Biomedical Papers-Palacky University in Olomouc. 2001;145(2):17-26.
31.    Denet A-R, Vanbever R, Préat V. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev. 2004;56(5):659-674.
32.    Shah N, Carvajal M, Patel C, Infeld M, Malick A. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm. 1994;106(1):15-23.
33.    Ding Hm, Ma Yq. Theoretical and computational investigations of nanoparticle–biomembrane interactions in cellular delivery. Small. 2015;11(9-10):1055-1071.
34.    Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm. 2000;50(1):179-188.
35.    Aburahma MH, El-Laithy HM, Hamza YE-S. Oral bioavailability enhancement of vinpocetine using self-microemulsifying drug delivery system containing long chain triglycerides: Preparation and in vitro/in vivo evaluation. Clin Res Regul Aff. 2010;27(4):97-107.
36.    Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release 1994;30(1):1-15.
37.    Kulinsky L, Madou M. BioMEMs for drug delivery applications. MEMS for Biomedical Applications: Elsevier; 2012. p. 218-268.
38.    Shaker DS, Ishak RA, Ghoneim A, Elhuoni MA. Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci Pharm. 2019;87(3):17.
39.    Trommer H, Neubert R. Overcoming the stratum corneum: the modulation of skin penetration. Skin Pharmacol Physiol. 2006;19(2):106-121.
40.    Aziz ZAA, Mohd-Nasir H, Ahmad A, Peng WL, Chuo SC, Khatoon A, et al. Role of nanotechnology for design and development of cosmeceutical: application in makeup and skin care. Front Chem. 2019;7:739.
41.    Abolmaali SS, Tamaddon AM, Farvadi FS, Daneshamuz S, Moghimi H. Pharmaceutical nanoemulsions and their potential topical and transdermal applications. Iran J Pharm Sci. 2011;7(3):139-150.
42.    Ashaolu TJ. Nanoemulsions for health, food, and cosmetics: a review. Environ Chem Lett. 2021:1-15.
43.    Rocha-Filho PA, Ferrari M, Maruno M, Souza O, Gumiero V. In vitro and in vivo evaluation of nanoemulsion containing vegetable extracts. Cosmet. 2017;4(3):32.
44.    Sabouri M, Samadi A, Nasrollahi SA, Farboud ES, Mirrahimi B, Hassanzadeh H, et al. Tretinoin loaded nanoemulsion for acne vulgaris: Fabrication, physicochemical and clinical efficacy assessments. Skin Pharmacol Physiol. 2018;31(6):316-323.
45.    Yousefpoor Y, Amani A, Divsalar A, Mousavi SE, Shakeri A, Sabzevari JT. Anti-rheumatic activity of topical nanoemulsion containing bee venom in rats. Eur J Pharm Biopharm 2022;172:168-176.
46.    Abbasifard M, Yousefpoor Y, Amani A, Arababadi MK. Topical bee venom nano-emulsion ameliorates serum level of Endothelin-1 in collagen-induced rheumatoid arthritis model. Bionanoscience. 2021;11(3):810-815.
47.    Yousefpoor Y, Amani A, Divsalar A, Vafadar MR. Topical delivery of bee venom through the skin by a water-in-oil nanoemulsion. Nanomed J. 2022; 9(2):131-137.
48.    Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioallied Sci. 2012;4(1):2.
49.    Hosmer J, Reed R, Bentley MVL, Nornoo A, Lopes LB. Microemulsions containing medium-chain glycerides as transdermal delivery systems for hydrophilic and hydrophobic drugs. AAPS Pharmscitech. 2009;10(2):589-596.
50.    Resende KX, Corrêa MA, Oliveira AGd, Scarpa MV. Effect of cosurfactant on the supramolecular structure and physicochemical properties of non-ionic biocompatible microemulsions. Ciências Farmacêuticas. 2008;44:35-42.
51.    Li L, Zhou CH, Xu ZP. Self-nanoemulsifying drug-delivery system and solidified self-nanoemulsifying drug-delivery system. Nanocarriers for Drug Delivery: Elsevier; 2019. p. 421-449.
52.    Ramanunny AK, Wadhwa S, Gulati M, Singh SK, Kapoor B, Dureja H, et al. Nanocarriers for treatment of dermatological diseases: principle, perspective and practices. Eur J Pharmacol. 2021;890:173691.
53.    Grampurohit N, Ravikumar P, Mallya R. Microemulsions for topical use–a review. Ind J Pharm Edu Res. 2011;45(1):100-107.
54.    May PJ, Tong SY, Steer AC, Currie BJ, Andrews RM, Carapetis JR, et al. Treatment, prevention and public health management of impetigo, scabies, crusted scabies and fungal skin infections in endemic populations: a systematic review. Trop Med Int Health. 2019;24(3):280-293.
55.    Padhy S, Sahoo BM, Kumar BV, Patra CN. Development, Characterization and Evaluation of Nanoemulgel Used for the Treatment of Skin Disorders. Curr Nanomater. 2021;6(1):43-57.
56.    Thakur K, Sharma G, Singh B, Katare OP. Topical drug delivery of anti-infectives employing lipid-based nanocarriers: dermatokinetics as an important tool. Curr Pharm Des. 2018;24(43):5108-5128.
57.    Seema K, Agarwal A, Varshney MM, Kumar P. Preparation and evaluation of nanoemulsion containing antibacterial drug. World J Pharm Pharm Sci. 2019.
58.    Begum K, Shahid MS, Jalil RU. Topical nanoemulsion of rifampicin with benzoic acid and salicylic acid: Activity against staphylococcus aureus, stap. epidermis and candida albicans. Bangladesh J Pharmacol. 2019;22(1):1-6.
59.    Santos-Magalhaes N, Pontes A, Pereira V, Caetano M. Colloidal carriers for benzathine penicillin G: nanoemulsions and nanocapsules. Int J Pharm. 2000;208(1-2):71-80.
60.    Valizadeh A, Shirzad M, Esmaeili F, Amani A. Increased antibacterial activity of cinnamon oil microemulsionin comparison with cinnamon oil bulk and nanoemulsion. Nanomed Res J. 2018;3(1):37-43.
61.    Singh N, Verma SM, Singh SK, Verma PRP. Consequences of lipidic nanoemulsions on membrane integrity and ultrastructural morphology of Staphylococcus aureus. Mater Res Express. 2014;1(2):025401.
62.    Thakur K, Sharma G, Singh B, Jain A, Tyagi R, Chhibber S, et al. Cationic-bilayered nanoemulsion of fusidic acid: An investigation on eradication of methicillin-resistant Staphylococcus aureus 33591 infection in burn wound. Nanomed. 2018;13(8):825-847.
63.    Sonawane SJ, Kalhapure RS, Jadhav M, Rambharose S, Mocktar C, Govender T. Transforming linoleic acid into a nanoemulsion for enhanced activity against methicillin susceptible and resistant Staphylococcus aureus. RSC advances. 2015;5(110):90482-90492.
64.    Krishnamoorthy R, Athinarayanan J, Periasamy VS, Adisa AR, Al-Shuniaber MA, Gassem MA, et al. Antimicrobial activity of nanoemulsion on drug-resistant bacterial pathogens. Microb Pathog. 2018;120:85-96.
65.    Sugumar S, Ghosh V, Nirmala MJ, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason Sonochem 2014;21(3):1044-10499.
66.    Franklyne JS, Ebenazer LA, Mukherjee A, Natarajan C. Cinnamon and clove oil nanoemulsions: novel therapeutic options against vancomycin intermediate susceptible Staphylococcus aureus. Appl Nanosci. 2019;9(7):1405-1415.
67.    Álvarez-Martínez F, Barrajón-Catalán E, Herranz-López M, Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine. 2021;90:153626.
68.    Yang Q, Liu S, Gu Y, Tang X, Wang T, Wu J, et al. Development of sulconazole-loaded nanoemulsions for enhancement of transdermal permeation and antifungal activity. Int J Nanomed. 2019;14:3955.
69.    Karri VNR, Raman SK, Kuppusamy G, Mulukutla S, Ramaswamy S, Malayandi R. Terbinafine hydrochloride loaded nanoemulsion based gel for topical application. J Pharm Investig. 2015;45(1):79-89.
70.    Alghaith AF, Alshehri S, Alhakamy NA, Hosny KM. Development, optimization and characterization of nanoemulsion loaded with clove oil-naftifine antifungal for the management of tinea. Drug Deliv. 2021;28(1):343-356.
71.    Bonfim CMd, Monteleoni LF, Calmon MdF, Cândido NM, Provazzi PJS, Lino VdS, et al. Antiviral activity of curcumin-nanoemulsion associated with photodynamic therapy in vulvar cell lines transducing different variants of HPV-16. Artif. Cells Nanomed. Biotechnol. 2020;48(1):515-524.
72.    Nicolaidou E, Katsambas AD. Pigmentation disorders: hyperpigmentation and hypopigmentation. Clin Dermatol. 2014;32(1):66-72.
73.    Plensdorf S, Livieratos M, Dada N. Pigmentation disorders: diagnosis and management. American family physician. 2017;96(12):797-804.
74.    Engin C, Cayir Y. Pigmentation Disorders: A Short Review. Pigmentary Disorders. 2015;2(189):2376-0427.1000189.
75.    Nautiyal A, Wairkar S. Management of Hyperpigmentation: Current treatments and emerging therapies. Pigment Cell Melanoma Res. 2021;34(6):1000-1014.
76.    Hatem S, El Hoffy NM, Elezaby RS, Nasr M, Kamel AO, Elkheshen SA. Background and different treatment modalities for melasma: Conventional and nanotechnology-based approaches. J Drug Deliv Sci Technol. 2020:101984.
77.    Üstündaǧ Okur N, Çağlar EŞ, Pekcan AN, Okur ME, Ayla Ş. Preparation, optimization and in vivo anti-inflammatory evaluation of hydroquinone loaded microemulsion formulations for melasma treatment. 2019;23(4):662-670.
78.    Poomanee W, Chaiyana W, Wickett RR, Leelapornpisid P. Stability and solubility improvement of Sompoi (Acacia concinna Linn.) pod extract by topical microemulsion. Asian J Pharm Sci. 2017;12(4):386-393.
79.    Elshibani F, El Hawary S, Abd El Rahaman El Shabrawy S, Ezzat MA, Elremali N, Eltaboni F. Determination of arbutin content and in-vitro assessment of anti-hyperpigmentation activity of microemulsion prepared from methanolic extract of the aerial part of arbutus pavarii pampan growing in east of libya. Int J Innov Res Sci Eng Technol. 2020;9(3):1086-1093.
80.    Parveen R, Akhtar N, Mahmood T. Topical microemulsion containing Punica granatum extract: its control over skin erythema and melanin in healthy Asian subjects. Adv Dermatol Allerg. 2014;31(6):351.
81.    Sripanidkulchai B, Chaiittianan R, Suttanut K. Safety and efficacy assessment of skin gel containing nanoemulsion of Phyllanthus emblica extract: A randomized, double-blind, placebo-controlled study. Songklanakarin J Sci Tech. 2020;42(2):305-313.
82.    Peira E, Carlotti ME, Cavalli R, Trotta M. Azelaic acid sodium salt in the formulation of microemulsions for topical applications. J Drug Deliv Sci Technol. 2006;16(5):375-379.
83.    Jacobus Berlitz S, De Villa D, Maschmann Inacio LA, Davies S, Zatta KC, Guterres SS, et al. Azelaic acid-loaded nanoemulsion with hyaluronic acid–a new strategy to treat hyperpigmentary skin disorders. Drug Dev Ind Pharm. 2019;45(4):642-650.
84.    Atrux-Tallau N, Lasselin J, Han S-H, Delmas T, Bibette J. Quantitative analysis of ligand effects on bioefficacy of nanoemulsion encapsulating depigmenting active. Colloids Surf B Biointerfaces. 2014;122:390-395.
85.    Sun M-C, Xu X-L, Lou X-F, Du Y-Z. Recent Progress and Future Directions: The Nano-Drug Delivery System for the Treatment of Vitiligo. Int J Nanomed. 2020;15:3267.
86.    Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids Surf B Biointerfaces. 2013;102:86-94.
87.    Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo–part II: rheological characterization and in vivo assessment through dermatopharmacokinetic and pilot clinical studies. Colloids Surf B Biointerfaces. 2014;119:145-153.
88.    Barradas TN, Senna JP, Cardoso SA, Nicoli S, Padula C, Santi P, et al. Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. Eur. J. Pharm. Biopharm. 2017;116:38-50.
89.    Quintão WdSC, Alencar-Silva T, de Fátima Borin M, Rezende KR, Albernaz LC, Cunha-Filho M, et al. Microemulsions incorporating Brosimum gaudichaudii extracts as a topical treatment for vitiligo: In vitro stimulation of melanocyte migration and pigmentation. J Mol Liq. 2019;294:111685.
90.    Sureshkumar R. Flavonoids as adjuvant in psoralen-based phytochemotherapy in the management of vitiligo/leukoderma. Med Hypotheses. 2018;121:26-30.
91.    Wu J-Y, Li Y-J, Liu T-T, Ou G, Hu X-B, Tang T-T, et al. Microemulsions vs chitosan derivative-coated microemulsions for dermal delivery of 8-methoxypsoralen. Int J Nanomed. 2019;14:2327.
92.    Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, et al. Erratum: Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Advances. 2020;10(46):27322.
93.    De Luca I, Pedram P, Moeini A, Cerruti P, Peluso G, Di Salle A, et al. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review. Appl Sci. (Switzerland). 2021;11(4):1-19.
94.    Young A, McNaught C-E. The physiology of wound healing. Surgery (Oxford). 2011;29(10):475-479.
95.    Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound healing: From material sciences to wound healing applications. Nano Select. 2020;1(5):443-460.
96.    Yousefpoor Y, Bolouri B, Bayati M, Shakeri A, Eskandari Y. The combined effects of Aloe vera gel and silver nanoparticles on wound healing in rats. Nanomed J. 2016;3(1):57-64.
97.    Kazemi M, Mohammadifar M, Aghadavoud E, Vakili Z, Aarabi MH, Talaei SA. Deep skin wound healing potential of lavender essential oil and licorice extract in a nanoemulsion form: Biochemical, histopathological and gene expression evidences. J Tissue Viability. 2020;29(2):116-124.
98.    Abdellatif MM, Elakkad YE, Elwakeel AA, Allam RM, Mousa MR. Formulation and characterization of propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride for wound healing: In-vitro and in-vivo wound healing assessment. Saudi Pharm J. 2021;29(11):1238-1249.
99.    Akrawi SH, Gorain B, Nair AB, Choudhury H, Pandey M, Shah JN, et al. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing. Pharm. 2020;12(9):893.
100.    Kiprono SK, Chaula BM, Beltraminelli H. Histological review of skin cancers in African Albinos: A 10-year retrospective review. BMC cancer. 2014;14(1):1-4.
101.    Mudigonda T, Levender MM, O’Neill JL, West CE, Pearce DJ, Feldman SR. Incidence, risk factors, and preventative management of skin cancers in organ transplant recipients: A review of single‐and multicenter retrospective studies from 2006 to 2010. Dermatol. Surg. 2013;39(3pt1):345-364.
102.    Council ML. Common skin cancers in older adults: approach to diagnosis and management. Clin Geriatr Med. 2013;29(2):361-72.
103.    WCRF WCRf. Skin Cancer 2021 [Available from: https://www.wcrf.org/dietandcancer/skin-cancer/.
104.    Alipanah H, Farjam M, Zarenezhad E, Roozitalab G, Osanloo M. Chitosan nanoparticles containing limonene and limonene-rich essential oils: potential phytotherapy agents for the treatment of melanoma and breast cancers. BMC Complement. Med Ther. 2021;21(1):1-10.
105.    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
106.    Hu X-B, Kang R-R, Tang T-T, Li Y-J, Wu J-Y, Wang J-M, et al. Topical delivery of 3, 5, 4′-trimethoxy-trans-stilbene-loaded microemulsion-based hydrogel for the treatment of osteoarthritis in a rabbit model. Drug Deliv Transl Res. 2019;9(1):357-365.
107.    Wu J-Y, Li Y-J, Liu X-Y, Cai J-X, Hu X-B, Wang J-M, et al. 3, 5, 4′-trimethoxy-trans-stilbene loaded PEG-PE micelles for the treatment of colon cancer. Int J Nanomed. 2019;14:7489.
108.    Wu JY, Cai JX, Li YJ, Hu XB, Liu XY, Wang JM, et al. 3,5,4’-Trimethoxy-trans-stilbene loaded microemulsion for cutaneous melanoma therapy by transdermal drug delivery. Drug Deliv Transl. Res. 2021;11(1):169-181.
109.    Liu LF, Desai SD, LI TK, Mao Y, Sun M, SIM SP. Mechanism of action of camptothecin. Annals of the New York Academy of Sciences. 2000;922(1):1-10.
110.    Thomas CJ, Rahier NJ, Hecht SM. Camptothecin: current perspectives. Bioorg Med Chem. 2004;12(7):1585-1604.
111.    Fang JY, Hung CF, Hua SC, Hwang TL. Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells. Ultrasonics. 2009;49(1):39-46.
112.    Ahmad N, Ahmad R, Mohammed Buheazaha T, Salman AlHomoud H, Al-Nasif HA, Sarafroz M. A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin. Saudi J Biol Sci. 2020;27(4):1024-1040.
113.    Parisi R, Iskandar IYK, Kontopantelis E, Augustin M, Griffiths CEM, Ashcroft DM. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ. 2020;369:m1590.
114.    Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. 2017;31(2):205-512.
115.    Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475.
116.    Raza K, Kumar M, Kumar P, Malik R, Sharma G, Kaur M, et al. Topical delivery of aceclofenac: Challenges and promises of novel drug delivery systems. BioMed Res Int. 2014;2014.
117.    Dinshaw IJ, Ahmad N, Salim N, Leo BF. Nanoemulsions: A review on the conceptualization of treatment for psoriasis using a ‘green’ surfactant with low-energy emulsification method. Pharm. 2021;13(7):1024.
118.    Xie J, Huang S, Huang H, Deng X, Yue P, Lin J, et al. Advances in the application of natural products and the novel drug delivery systems for psoriasis. Front Pharmacol. 2021;12:644952.
119.    Ali MS, Alam MS, Imam FI, Siddiqui MR. Topical nanoemulsion of turmeric oil for psoriasis: characterization, ex vivo and in vivo assessment. Int J Drug Deliv. 2012;4(2):184.
120.    Kaur A, Katiyar SS, Kushwah V, Jain S. Nanoemulsion loaded gel for topical co-delivery of clobitasol propionate and calcipotriol in psoriasis. Nanomedicine. 2017;13(4):1473-1482.
121.    Sahu S, Katiyar SS, Kushwah V, Jain S. Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomed. 2018;13(16):1985-1998.
122.    Rajitha P, Shammika P, Aiswarya S, Gopikrishnan A, Jayakumar R, Sabitha M. Chaulmoogra oil based methotrexate loaded topical nanoemulsion for the treatment of psoriasis. J Drug Deliv Sci Technol. 2019;49:463-476.
123.    Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J Drug Deliv Sci Technol. 2020;59:101847.
124.    Musa SH, Basri M, Masoumi HRF, Shamsudin N, Salim N. Enhancement of physicochemical properties of nanocolloidal carrier loaded with cyclosporine for topical treatment of psoriasis: in vitro diffusion and in vivo hydrating action. Int J Nanomed. 2017;12:2427.
125.    Pandey SS, Maulvi FA, Patel PS, Shukla MR, Shah KM, Gupta AR, et al. Cyclosporine laden tailored microemulsion-gel depot for effective treatment of psoriasis: In vitro and in vivo studies. Colloids Surf B Biointerfaces. 2020;186:110681.
126.    Williams HC. Atopic dermatitis. N Engl J Med. 2005;352(22):2314-2324.
127.    Parekh K, Mehta TA, Dhas N, Kumar P, Popat A. Emerging Nanomedicines for the Treatment of Atopic Dermatitis. AAPS PharmSciTech. 2021;22(2):55.
128.    Kakkar V, Kumar M, Saini K. An overview of atopic dermatitis with a focus on nano-interventions. Innov. 2019;1:2019.
129.    Baspinar Y, Keck CM, Borchert H-H. Development of a positively charged prednicarbate nanoemulsion. Int J Pharm. 2010;383(1):201-208.
130.    Lalan MS, Laddha NC, Lalani J, Imran MJ, Begum R, Misra A. Suppression of cytokine gene expression and improved therapeutic efficacy of microemulsion-based tacrolimus cream for atopic dermatitis. Drug Deliv Transl Res. 2012;2(2):129-141.
131.    Yang M, Gu Y, Yang D, Tang X, Liu J. Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. J Nanobiotechnology. 2017;15(1):1-15.
132.    Najafi-Taher R, Amani A. Nanoemulsions: Colloidal topical delivery systems for antiacne agents-A Mini-Review. Nanomed Res J. 2017;2(1):49-56.
133.    Patel MR, Patel RB, Parikh JR, Patel BG. Formulation consideration and skin retention study of microemulsion containing tazarotene for targeted therapy of acne. J Pharm Investig. 2016;46(1):55-66.
134.    Patel MR, Patel RB, Parikh JR, Patel BG. Novel microemulsion-based gel formulation of tazarotene for therapy of acne. Pharm Dev Technol. 2016;21(8):921-932.
135.    Nasr M, Abdel-Hamid S. Optimizing the dermal accumulation of a tazarotene microemulsion using skin deposition modeling. Drug Dev Ind Pharm. 2016;42(4):636-643.
136.    Bhatia G, Zhou Y, Banga AK. Adapalene Microemulsion for Transfollicular Drug Delivery. J Pharm Sci. 2013;102(8):2622-2631.
137.    Bubić Pajić N, Ilić T, Nikolić I, Dobričić V, Pantelić I, Savić S. Alkyl polyglucoside-based adapalene-loaded microemulsions for targeted dermal delivery: Structure, stability and comparative biopharmaceutical characterization with a conventional dosage form. J Drug Deliv Sci Technol. 2019;54:101245.
138.    Kumar A, Agarwal SP, Ahuja A, Ali J, Choudhry R, Baboota S. Preparation, characterization, and in vitro antimicrobial assessment of nanocarrier based formulation of nadifloxacin for acne treatment. Pharmazie. 2011;66(2):111-114.
139.    Shinde U, Pokharkar S, Modani S. Design and evaluation of microemulsion gel system of nadifloxacin. Ind J Pharm. Sci. 2012;74(3):237.
140.    Moghimipour E, Salimi A, Leis F. Preparation and evaluation of tretinoin microemulsion based on pseudo-ternary phase diagram. Adv Pharm Bull. 2012;2(2):141.
141.    Mortazavi SA, Pishrochi S. Formulation and in-vitro evaluation of tretinoin microemulsion as a potential carrier for dermal drug delivery. Iran J Pharm Res. 2013;12(4):599.
142.    Patel MR, Patel RB, Parikh JR, Patel BG. Improving the isotretinoin photostability by incorporating in microemulsion matrix. Int Sch Res Notices. 2011;2011.
143.    Gürbüz A, Özhan G, Güngör S, Erdal MS. Colloidal carriers of isotretinoin for topical acne treatment: skin uptake, ATR-FTIR and in vitro cytotoxicity studies. Arch Dermatol Res. 2015;307(7):607-615.
144.    Gürbüz A, Güngör S, Erdal MS. Development and in vitro characterization of microemulsions of isotretinoin. ACTA Pharm Sci. 2017;55(2).
145.    Wani A, Sanghani C, Wani S. Formulation, characterization, and in vitro evaluation of novel microemulsion-based spray for topical delivery of isotretinoin. Asian J. Pharm. Clin Res. 2018;11(10):226-232.
146.    Patel MR, Patel RB, Parikh JR, Patel BG. Novel isotretinoin microemulsion-based gel for targeted topical therapy of acne: formulation consideration, skin retention and skin irritation studies. Appl Nanosci. 2016;6(4):539-553.
147.    Hameed A, Fatima GR, Malik K, Muqadas A, Fazal-ur-Rehman M. Scope of nanotechnology in cosmetics: dermatology and skin care products. J Med Chem Sci. 2019;2(1):9-16.
148.    Menaa F. Emulsions systems for skin care: From macro to nano-formulations. J. Pharma Care Health Sys. 2014;1:e104.
149.    Tiwari U, Ganesan NG, Junnarkar J, Rangarajan V. Toward the formulation of bio-cosmetic nanoemulsions: from plant-derived to microbial-derived ingredients. J Dispers Sci Technol. 2020:1-18.
150.    Sonneville-Aubrun O, Yukuyama MN, Pizzino A. Application of nanoemulsions in cosmetics.  Nanoemulsions: Elsevier; 2018. p. 435-475.
151.    Sonneville-Aubrun O, Simonnet JT, L’Alloret F. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci. 2004;108-109:145-149.
152.    Yilmaz E, Borchert H-H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema—an in vivo study. Int J Pharm.  2006;307(2):232-238.
153.    Bernardi DS, Pereira TA, Maciel NR, Bortoloto J, Viera GS, Oliveira GC, et al. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: In vitro and in vivo assessments. J Nanobiotechnology. 2011;9:44.
154.    D’Cunha NM, Peterson G, Baby K, Thomas J. Impetigo: A need for new therapies in a world of increasing antimicrobial resistance. J Clin Pharm Ther. 2017;43(1):150-153.
155.    Sadick N. Treatment for cellulite. Int J Womens Dermatol. 2019;5(1):68-72.
156.    Jackson JD. Infectious folliculitis. UpToDate Retrieved from www uptodate com/contents/infectious-folliculitis. 2017.
157.    Michael Y, Shaukat NM. Erysipelas. StatPearls [Internet]. 2020.
158.    Burlina PM, Joshi NJ, Mathew PA, Paul W, Rebman AW, Aucott JN. AI-based detection of erythema migrans and disambiguation against other skin lesions. Comput Biol Med. 2020;125:103977.
159.    Patel Y, Poddar A, Sawant K. Formulation and characterization of Cefuroxime Axetil nanoemulsion for improved bioavailability. J Pharm Bioallied Sci. 2012;4(Suppl 1):S4.
160.    Shanmugapriya K, Kim H, Kang HW. A new alternative insight of nanoemulsion conjugated with κ-carrageenan for wound healing study in diabetic mice: In vitro and in vivo evaluation. Eur J Pharm Sci. 2019;133:236-250.
161.    Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, et al. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC advances. 2019;9(35):20192-20206.
162.    Teo SY, Yew MY, Lee SY, Rathbone MJ, Gan SN, Coombes AG. In vitro evaluation of novel phenytoin-loaded alkyd nanoemulsions designed for application in topical wound healing. J Pharm Sci. 2017;106(1):377-384.
163.    Alam P, Ansari MJ, Anwer MK, Raish M, Kamal YK, Shakeel F. Wound healing effects of nanoemulsion containing clove essential oil. Artif. Cells Nanomed Biotechnol. 2017;45(3):591-597.
164.    Chakorborty T, Gupta S, Nair A, Chauhan S, Saini V. Wound healing potential of insulin-loaded nanoemulsion with Aloe vera gel in diabetic rats. J Drug Deliv Sci Technol. 2021:102601.
165.    Balestrin LA, Kreutz T, Fachel FNS, Bidone J, Gelsleichter NE, Koester LS, et al. Achyrocline satureioides (Lam.) DC (Asteraceae) extract-loaded nanoemulsions as a promising topical wound healing delivery system: In vitro Assessments in Human Keratinocytes (HaCaT) and HET-CAM Irritant Potential. Pharmaceutics. 2021;13(8):1241.
166.    Kaur T, Kapoor DN. Development and evaluation of sea buckthorn (Hippophae rhamnoides L.) seed oil nanoemulsion gel for wound healing. Pharmacogn Mag. 2018;14(58):647.
167.    Zain MSC, Edirisinghe SL, Kim C-H, De Zoysa M, Shaari K. Nanoemulsion of flavonoid-enriched oil palm (Elaeis guineensis Jacq.) leaf extract enhances wound healing in zebrafish. Phytomedicine Plus. 2021;1(4):100124.
168.    Gundogdu G, Nalci KA, Ugur Kaplan AB, Gundogdu K, Demirci T, Demirkaya Miloglu F, et al. The Evaluation of the Effects of Nanoemulsion Formulations Containing Boron and/or Zinc on the Wound Healing in Diabetic Rats. Int J Low Extrem Wounds. 2020:1534734620961892.
169.    Ahmad N, Alam MA, Ahmad FJ, Sarafroz M, Ansari K, Sharma S, et al. Ultrasonication techniques used for the preparation of novel Eugenol-Nanoemulsion in the treatment of wounds healings and anti-inflammatory. J Drug Deliv Sci Technol. 2018;46:461-473.
170.    Bonferoni M, Riva F, Invernizzi A, Dellera E, Sandri G, Rossi S, et al. Alpha tocopherol loaded chitosan oleate nanoemulsions for wound healing. Evaluation on cell lines and ex vivo human biopsies, and stabilization in spray dried Trojan microparticles. Eur J Pharm Biopharm. 2018;123:31-41.
171.    Thomas L, Zakir F, Mirza MA, Anwer MK, Ahmad FJ, Iqbal Z. Development of Curcumin loaded chitosan polymer based nanoemulsion gel: In vitro, ex vivo evaluation and in vivo wound healing studies. Int J Biol Macromol. 2017;101:569-579.
172.    Back PI, Balestrin LA, Fachel FNS, Nemitz MC, Falkembach M, Soares G, et al. Hydrogels containing soybean isoflavone aglycones-rich fraction-loaded nanoemulsions for wound healing treatment–in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2020;196:111301.
173.    Kaul S, Gulati N, Verma D, Mukherjee S, Nagaich U. Role of nanotechnology in cosmeceuticals: A review of recent advances. J Pharm. (Cairo). 2018;2018.
174.    Souto EB, Fernandes AR, Martins-Gomes C, Coutinho TE, Durazzo A, Lucarini M, et al. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl Sci. 2020;10(5):1594.
175.    Santos AC, Rodrigues D, Sequeira JA, Pereira I, Simões A, Costa D, et al. Nanotechnological breakthroughs in the development of topical phytocompounds-based formulations. Int J Pharm. 2019;572:118787.