Quality by design enabled formulation development of regorafenib monohydrate loaded PEGylated PLGA polymeric nanoparticles: Enhanced oral bioavailability and biopharmaceutical attributes

Document Type : Research Paper

Authors

1 School of Pharmaceutical Sciences (SPS), Siksha O Anusandhan Deemed to be University, Kalinga Nagar, Ghatikia, Bhubaneswar-751029, Odisha, India

2 Amity Institute of Pharmacy, Amity University, Major Arterial Road, AA II, Newtown, Kadampukur, Kolkata-700135, West Bengal, India

3 Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur-760010, Odisha, India

4 School of Pharmacy and Life Science, Centurion University of Technology and Management Bhubaneswar-751009, Odisha, India

Abstract

Objective(s): Using a quality-by-design methodology, the current research is aimed to prepare and enhance the PEGylated PLGA-loaded regorafenib monohydrate polymeric nanoparticles for enhancing oral bioavailability and biopharmaceutical attributes. The oral multi-kinase inhibitor inhibits VEGFR2-TIE2 tyrosine kinases on two separate targets, which results in anti-angiogenic activity. It also inhibits stromal and oncogenic receptor tyrosine kinases. 
Materials and Methods: The current study developed nanosized, biocompatible, and PEGylated PLGA polymeric nanoparticles to administer regorafenib monohydrate to patients with metastatic colon cancer. This was accomplished using a modified nanoprecipitation technique to make drug-encapsulated PEGylated PLGA nanoparticles with poloxamer 188 as a stabilizer. 
Results: The polymeric nanoformulations were characterized for zeta potential, distribution of particle size, entrapment efficiency, DSC, FT-IR, X-RD, and SEM. Both in vitro and in vivo experimental studies were performed for the pure drug and the improved nanoparticle formulation.
Conclusion: The nanoparticles obtained from optimization studies  were found to have smaller particle sizes, higher entrapment efficiency (%), drug loading capacity, spherical shape particles, amorphous drug embedded matrix, and a biphasic delayed release pattern. These findings suggest that drug-loaded PEGylated PLGA nanoparticles are a potent formulation for the treatment of colon cancer, with improved oral bioavailability and biopharmaceutical properties.

Keywords


1. Ghose D, Patra CN, Ravi Kumar BVV, Swain S, Jena BR, Choudhury P, et al. QbD-based formulation optimization and characterization of polymeric nanoparticles of cinacalcet hydrochloride with improved biopharmaceutical attributes. Turk J Pharm Sci. 2021; 18 (4): 452–464. 
2. Girotra P, Singh SK, Kumar G. Development of zolmitriptan loaded PLGA/poloxamer nanoparticles for migraine using quality by design approach. Int J Biol Macromol. 2016; 85: 92-101. 
3. Li C, Menon R, Walles M, Singh R, Upreti VV, Brackman D, et al. Risk-based pharmacokinetic and drug-drug interaction characterization of antibody-drug conjugates in oncology clinical development: an international consortium for innovation and quality in pharmaceutical development perspective. Clin Pharmacol Ther. 2022; 112 (4): 754-769. 
4. Wang R, Liu Y, X Mi, Chen Q, Jiang P, Hou J, et al. Sirt3 promotes hepatocellular carcinoma cells sensitivity to regorafenib through the acceleration of mitochondrial dysfunction. Arch Biochem Biophys. 2020; 689: 108415. 
5. Cicero G, De Luca R, Dieli F. Efficacy and safety of the oral multikinase regorafenib in metastatic colorectal cancer. Oncology. 2017; 93 (6): 354-358. 
6. Majithia N, Grothey A. Regorafenib in the treatment of colorectal cancer. Expert Opin Pharmacother. 2015; 17: 137–145.
7. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly-(lactic-co-glycolic acid)-based drug delivery systems-a review. Int J Pharm. 2011; 415 (1–2): 34–52. 
8. Yekeduz E, Aktas EG, Koksoy EB, Dogan N, Urun Y, Utkan G. The prognostic role of polypharmacy in metastatic colorectal cancer patients treated with regorafenib. Future Oncol. 2022; 18 (9): 1067–1076. 
9. Dhillon S. Regorafenib: a review in metastatic colorectal cancer. Drugs. 2018; 78:1133-1144.
10. Choi JS, Park JS. Design and evaluation of the anticancer activity of paclitaxel-loaded anisotropic-poly (lactic-co-glycolic acid) nanoparticles with PEGylated chitosan surface modifications. Int J Biol Macromolecules. 2020; 162:1064-1075.
11. Mohammadinejad S, Jafari-Gharabaghlou D, Zarghami N. Development of PEGylated PLGA Nanoparticles Co-Loaded with Bioactive Compounds: Potential Anticancer Effect on Breast Cancer Cell Lines. Asian Pac J Cancer Prev. 2022 Dec 1;23(12):4063-4072. 
12. Swain S, Sahu PK, Beg S, Babu SM. Nanoparticles for Cancer Targeting: Current and Future Directions. Curr Drug Deliv. 2016;13(8):1290-1302.
13. Xia D, Hu C, Hou Y. Regorafenib loaded self-assembled lipid-based nanocarrier for colorectal cancer treatment via lymphatic absorption. Eur J Pharm Biopharm. 2023; 185:165-176. 
14. Sharma T, Jain A, Kaur R, Saini S, Katare OP, Singh B. Supersaturated LFCS type III self-emulsifying delivery systems of sorafenib tosylate with improved biopharmaceutical performance: QbD-enabled development and evaluation. Drug Deliv Transl Res. 2020;10(4):839-861. 
15. Kenjale P, Pokharkar V. Risk assessment and QbD-based optimization of sorafenib tosylate colon targeted bilayer tablet: In vitro characterization, in vivo pharmacokinetic, and in vivo roentgenography studies. AAPS PharmSciTech. 2022; 23(6): 184.
16. Beg S, Malik AK, Ansari MJ, Malik AA, Ali AM, Theyab A, et al. Systematic development of solid lipid nanoparticles of abiraterone acetate with improved oral bioavailability and anticancer activity for prostate carcinoma treatment. ACS Omega. 2022; 7(20):16968-16979.
17. Kurmi BD, Paliwal SR. Development and optimization of TPGS-based stealth liposome of doxorubicin using Box-Behnken design: characterization, hemocompatibility, and cytotoxicity evaluation in breast cancer cells. J Liposome Res. 2022;32(2):129-145.
18. Bahadori F, Eskandari Z, Ebrahimi N, Bostan MS, Eroğlu MS, Oner ET. Development and optimization of a novel PLGA-Levan based drug delivery system for curcumin, using a quality-by-design approach. Eur J Pharm Sci. 2019; 138:105037.
19. Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022; 291:120301. 
20. Fujita K, Miura M, Shibata H. Quantitative determination of regorafenib and its two major metabolites in human plasma with high‐performance liquid chromatography and ultraviolet detection. Biomedical Chromatography. 2016;30(10):1611-1617.
21. Kalluri L, Duan Y. Parameter Screening and Optimization for a Polycaprolactone-Based GTR/GBR Membrane Using Taguchi Design. Int J Mol Sci. 2022;23(15):8149.
22. Sharaf NS, Shetta A, Elhalawani JE, Mamdouh W. Applying Box–Behnken design for formulation and optimization of PLGA-coffee nanoparticles and detecting enhanced antioxidant and anticancer activities. Polymers. 2021;14(1):144. 
23. Panda PK, Jain SK. Doxorubicin bearing peptide anchored PEGylated PLGA nanoparticles for the effective delivery to prostate cancer cells. J Drug Deli Sci Tech. 2023; 86:104667.
24. Singh B, Sharma T, Saini S, Kaur R, Jain A, Raza K, et al. Systematic development of drug nanocargos using formulation by design (FbD): an updated overview. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2020;37(3).
25. Javed MN, Kohli K, Amin S. Risk assessment integrated QbD approach for development of optimized bicontinuous mucoadhesive limicubes for oral delivery of rosuvastatin. AAPS PharmSciTech. 2018; 19:1377-1391.
26. Dong M, Liu L, Zhang S. Nanostructural biomaterials and applications. J Nanomaterials. 2016;  https://doi.org/10.1155/2016/5903201
 27. Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm. 1999;185(1):23-35.
28. Janga KY, Jukanti R, Velpula A, Sunkavalli S, Bandari S, Kandadi P, et al. Bioavailability enhancement of zaleplon via proliposomes: Role of surface charge. Eur J Pharm Biopharm. 2012; 80(2):347-357.
29. Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm. 1999;187(2):143-152.
30. Quintanar-Guerrero D, Fessi H, Allemann E, Doelker E. Influence of stabilizing agents and preparative variables on the formation of poly (D, L-lactic acid) nanoparticles by an emulsification-diffusion technique. Int J Pharm. 1996; 143(2):133-141.
31. Arifin DY, Lee LY, Wang CH. Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Adv Drug Deliv Rev. 2006 Nov 30;58(12-13):1274-1325.
32. McGregor C, Bines E. The use of high-speed differential scanning calorimetry (Hyper-DSC) in the study of pharmaceutical polymorphs. Int J Pharm. 2008; 350(1-2):48-52.
33. Langer R. New methods of drug delivery. Science. 1990;249(4976):1527-1533.
34. Li X, He G, Su F, Chu Z, Xu L, Zhang Y, et al. Regorafenib-loaded poly (lactide-co-glycolide) microspheres designed to improve transarterial chemoembolization therapy for hepatocellular carcinoma. Asian J Pharm Sci. 2020;15(6):739-751.
35. Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine. 2012;8(2):237-249. 
36. Raj R, Pinto SN, Crucho CI, Das S, Baleizao C, Farinha JP. Optically traceable PLGA-silica nanoparticles for cell-triggered doxorubicin delivery. Colloids and Surfaces B: Biointerfaces. 2022; 220:112872.
37. Sokol MB, Chirkina MV, Yabbarov NG, Mollaeva MR, Podrugina TA, Pavlova AS, et al. Structural optimization of platinum drugs to improve the drug-loading and antitumor efficacy of PLGA nanoparticles. Pharmaceutics. 2022; 14(11):2333.
38. Ma C, Wei T, Hua Y, Wang Z, Zhang L. Effective Antitumor of Orally Intestinal Targeting Penetrating Peptide-Loaded Tyroserleutide/PLGA Nanoparticles in Hepatocellular Carcinoma. Int J Nanomedicine. 2021; 16:4495-4513.
39. Alkahtani S, Alarifi S, Albasher G, Al-Zharani M, Aljarba NH, Almarzoug MH, et al. Poly Lactic-Co-Glycolic Acid- (PLGA) Loaded Nanoformulation of Cisplatin as a Therapeutic Approach for Breast Cancers. Oxid Med Cell Longev. 2021; 5834418.
40. Zhou Z. Co-drug delivery of regorafenib and cisplatin with amphiphilic copolymer nanoparticles: Enhanced in vivo antitumor cancer therapy in nursing care. Drug Deli. 2020;27(1):1319-1328.
41. Barbalata CI, Porfire AS, Casian T, Muntean D, Rus I, Tertis M, et al. The use of the QbD approach to optimize the co-loading of simvastatin and doxorubicin in liposomes for a synergistic anticancer effect. Pharmaceuticals. 2022; 15(10):1211.