Preparation and characterization of electrospun apigenin-loaded polycaprolactone nanofibers for wound dressing applications

Document Type : Research Paper

Authors

1 Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran

2 Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran

3 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

5 Department of Nursing and Midwifery, Estahban branch, Islamic Azad university, Estahban, Iran

6 Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Objective(s): This study uses the blend-electrospinning method to explore the development of apigenin)APG(-loaded PCL nanofibers as a promising wound dressing material. 
Materials and Methods: The approach combines APG’s anti-inflammatory and antioxidant properties with the advantages of nanofibers for wound healing. The research investigates the electrospinning process for optimal parameters and characterizes the resulting nanofibers using FE-SEM, FTIR, and contact angle measurements. 
Results: The findings demonstrate successful APG incorporation into PCL nanofibers at concentrations up to 0.5 wt%. The APG release profile indicates a sustained release over 48 hours. Biocompatibility and cytotoxicity assessments using the Alamar Blue assay reveal excellent biocompatibility of APG-loaded PCL nanofibers (over 90% viability). Additionally, the nanofibers exhibit a porous, bead-free structure with improved hydrophilicity due to APG incorporation. 
Conclusion: Overall, this study highlights the development of APG/PCL nanofibers with promising characteristics for wound dressing applications. The combination of APG’s therapeutic properties, sustained release profile, and biocompatible nanofiber structure suggests their potential for effective wound healing.

Keywords


1. Ramakrishna S. An introduction to electrospinning and nanofibers: World scientific; 2005.
2. Heunis TDJ, Dicks LMT. Nanofibers offer alternative ways to the treatment of skin infections. J Biomed Biotechnol. 2010:2010:510682.
3. Song B, Wu C, Chang J. Controllable delivery of hydrophilic and hydrophobic drugs from electrospun poly (lactic‐co‐glycolic acid)/mesoporous silica nanoparticles composite mats. J Biomed Mater Res B Appl Biomater. 2012;100(8):2178-2186.
4. Xu J, Jiao Y, Shao X, Zhou C. Controlled dual release of hydrophobic and hydrophilic drugs from electrospun poly(l-lactic acid) fiber mats loaded with chitosan microspheres. Materials Letters. 2011;65(17):2800-2803.
5. Farhaj S, Conway BR, Ghori MU. Nanofibres in Drug Delivery Applications. Fibers. 2023;11(2):21.
6. Kumar L, Verma S, Joshi K, Utreja P, Sharma S. Nanofiber as a novel vehicle for transdermal delivery of therapeutic agents: challenges and opportunities. Future Journal of Pharmaceutical Sciences. 2021;7(1):1-17.
7. Adamu BF, Gao J, Jhatial AK, Kumelachew DM. A review of medicinal plant-based bioactive electrospun nano fibrous wound dressings. Materials & Design. 2021;209:109942.
8. Md Abu T, Zahan KA, Rajaie MA, Leong CR, Ab Rashid S, Mohd Nor Hamin NS, et al. Nanocellulose as drug delivery system for honey as antimicrobial wound dressing. Materials Today: Proceedings. 2020;31:14-17.
9. Ramazan E. Advances in fabric structures for wound care.  Advanced Textiles for Wound Care: Elsevier; 2019. p. 509-540.
10. Thomas S, Uzun M. Testing dressings and wound management materials.  Advanced textiles for wound care: Elsevier; 2019. p. 23-54.
11. Ardekani NT, Khorram M, Zomorodian K, Yazdanpanah S, Veisi H, Veisi H. Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. International journal of biological macromolecules. 2019;125:743-750.
12. Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, Joghataei MT, Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Materials Science and Engineering: C. 2016;69:1183-1191.
13. Jatoi AW, Ogasawara H, Kim IS, Ni Q-Q. Polyvinyl alcohol nanofiber based three phase wound dressings for sustained wound healing applications. Materials letters. 2019;241:168-171.
14. Jung H-S, Kim MH, Shin JY, Park SR, Jung J-Y, Park WH. Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydr Polym. 2018 Aug 1:193:205-211
15. Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm. 2021;604:120733.
16. Amiri Z, Molavi AM, Amani A, Moqadam KH, Vatanchian M, Hashemi SA, Oroojalian F. Fabrication, characterization and wound-healing properties of core–shell SF@ chitosan/ZnO/Astragalus arbusculinus gum nanofibers. Nanomedicine. 2024.
17. Adel M, Keyhanvar P, Zare I, Tavangari Z, Akbarzadeh A, Zahmatkeshan M. Nanodiamonds for tissue engineering and regeneration. Journal of Drug Delivery Science and Technology. 2023;90:105130.
18. Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem. 2001 Jun;49(6):3106-3112.
19. Škerget M, Kotnik P, Hadolin M, Hraš AR, Simonič M, Knez Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry. 2005;89(2):191-198.
20. Adel M, Zahmatkeshan M, Akbarzadeh A, Rabiee N, Ahmadi S, Keyhanvar P, et al. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. Biotechnol Rep (Amst). 2022:34:e00730.
21. Ma X, Lin Y, Liu Y, Li W, He J, Fang M, Lin D. Effects of Apigenin treatment on random skin flap survival in rats. Front Pharmacol. 2021;12:625733.
22. Pang Q, Zhao Y, Chen X, Zhao K, Zhai Q, Tu F. Apigenin Protects the Brain against Ischemia/Reperfusion Injury via Caveolin-1/VEGF In vitro and In vivo. Oxid Med Cell Longev. 2018 Dec 3:2018:7017204
23. Bächle AC, Mörsdorf P, Rezaeian F, Ong MF, Harder Y, Menger MD. N-acetylcysteine attenuates leukocytic inflammation and microvascular perfusion failure in critically ischemic random pattern flaps. Microvasc Res. 2011;82(1):28-34.
24. Ren K, Jiang T, Zhou H-F, Liang Y, Zhao G-J. Apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell Physiol Biochem. 2018;47(5):2170-2184.
25. Zhu D, Chen B, Xiang Z, Lin J, Miao Z, Wang Y, et al. Apigenin enhances viability of random skin flaps by activating autophagy. Phytother Res. 2021;35(7):3848-3860.
26. Lopez‐Jornet P, Camacho‐Alonso F, Gómez‐Garcia F, Molina Minano F, Canas X, Serafín A, et al. Effects of potassium apigenin and verbena extract on the wound healing process of SKH‐1 mouse skin.Int Wound J. 2014;11(5):489-495. 
27. Shukla R, Kashaw SK, Jain AP, Lodhi S. Fabrication of Apigenin loaded gellan gum–chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. Int J Biol Macromol. 2016:91:1110-1119.
28. Rajab AA, Al-Wattar WT, A Taqa G. The roles of apigenin cream on wound healing in rabbits model. Journal of Applied Veterinary Sciences. 2022;7(1):1-5.
29. Laurencin CT, Nair L.S. (Eds.). Nanotechnology and Tissue Engineering: The Scaffold. 1st, Editor: CRC Press; 2008.
30. Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release. 2012 Feb 28;158(1):15-33.
31. Merrell JG, McLaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS. Curcumin loaded poly (ε-caprolactone) nanofibers: diabetic wound dressing with antioxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol. 2009;36(12):1149-1156.
32. Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M. Synthetic polymeric biomaterials for wound healing: A review. Prog Biomater. 2018;7(1):1-21.
33. Jirofti N, Golandi M, Movaffagh J, Ahmadi FS, Kalalinia F. Improvement of the wound-healing process by curcumin-loaded chitosan/collagen blend electrospun nanofibers: in vitro and in vivo studies. ACS Biomater Sci Eng. 2021;7(8):3886-3897.
34. Mouro C, Simões M, Gouveia IC. Emulsion electrospun fiber mats of PCL/PVA/Chitosan and eugenol for wound dressing applications. Advances in Polymer Technology. 2019;2019:9859506.
35. Zahmatkeshan M, Ilkhani H, Paknejad M, Adel M, Sarkar S, Saber R. Analytical characterization of label-free immunosensor subsystems based on multi-walled carbon nanotube array-modified gold interface. Comb Chem High Throughput Screen. 2015;18(1):83-88.
36. Samadian N, Hashemi M. Effects of apigenin and apigenin- loaded nanogel on induction of apoptosis in human chronic myeloid leukemia cells. Galen Med J. 2018;7:e1008.
37. Kuppan P, Sethuraman S, Krishnan UM. PCL and PCL-gelatin nanofibers as esophageal tissue scaffolds: Optimization, characterization and cell-matrix interactions. J Biomed Nanotechnol. 2013;9(9):1540-1555.
38. Sabzandam Sh, Zahmatkeshan M, Adel M, Mehrdadian M, Saliminia F, Esmaeili F. Investigating the therapeutic effect of folic acid conjugated ZnO nanoparticles on human triple negative breast cancer cell line. Zastita Materijala 2023;64(2):213-222. 
39. Poureini F, Mohammadi M, Najafpour GD, Nikzad M. Comparative study on the extraction of apigenin from parsley leaves (Petroselinum crispum L.) by ultrasonic and microwave methods. Chemical Papers. 2020;74(11):3857-3871.
40. Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials. 2005;26(19):4139-4147.
41. Mochane MJ, Motsoeneng TS, Sadiku ER, Mokhena TC, Sefadi JS. Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Applied Sciences. 2019;9(11):2205.
42. Zahmatkeshan M, Adel M, Bahrami S, Esmaeili F, Rezayat SM, Saeedi Y, et al. Polymer-based nanofibers: Preparation, fabrication, and applications. Handbook of nanofibers: Springer; 2019. p. 215-261.
43. Bahrami S, Adel M, Esmaeili F, Rezayat SM, Mehravi B, Zahmatkeshan M. Carbohydrate-based nanofibers: Applications and potentials.  Handbook of Nanofibers: Springer; 2019. p. 263-85.
44. Fallah M, Bahrami SH, Ranjbar-Mohammadi M. Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. Journal of industrial textiles. 2016;46(2):562-77.
45. Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu X, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. Journal of Controlled Release. 2005;105(1):43-51.
46. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X. Biodegradable electrospun fibers for drug delivery. J Control Release. 2003;92(3):227-231.
47. Bui HT, Chung OH, Dela Cruz J, Park JS. Fabrication and characterization of electrospun curcumin-loaded polycaprolactone-polyethylene glycol nanofibers for enhanced wound healing. Macromolecular Research. 2014;22(12):1288-1296.
48. Lee JH, Yeo Y. Controlled Drug Release from Pharmaceutical Nanocarriers. Chem Eng Sci. 2015;125:75-84.
49. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429-444.