Electrospinning applications in neurological diseases

Document Type : Review Paper

Author

Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou 510530, China

10.22038/nmj.2024.74253.1805

Abstract

Neurological diseases represent a spectrum of complex disorders characterized by degradation of nerve cells or nerve tissue within the nervous system. Currently, optimal therapeutic interventions for neurological diseases as a significant threat to human health are lacking. Electrospinning, as a widely used nanotechnology methos, is capable of producing a wide range of micro- and nano-structures with the excellent structure, high specific surface area, and superior drug loading capacity. It also provides the solution properties including viscosity, elasticity, conductivity, and surface tension. The improvements of electrospinning devices can be achieved by controlling variables including voltage, zeta potential, distance between electrospinning nozzle and the collector, and also, environmental parameters including temperature and humidity. Hence, electrospinning could mimic the complex neural tissue structure, regulate the behavior of neuronal cells, and even deliver the drugs across the blood-brain barrier, showing excellent application prospects in neurological diseases. In this review, we summarize the recent improvements of electrospinning and the recent applications of electrospinning in neurological diseases, hoping that it may provide the valuable insights for researchers in the field of nanomaterials.

Keywords


1. Pena SA, Iyengar R, Eshraghi RS, Bencie N, Mittal J, Aljohani A, et al. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target. 2020; 28(2):111-128.
2.    Cottler LB, Zunt J, Weiss B, Kamal AK, Vaddiparti K. Building global capacity for brain and nervous system disorders research. Nature. 2015, 527:S207–S213.
3.    Chin JH, Vora N. The global burden of neurologic diseases. Neurology. 2014; 83:349–351.
4.    Nadaf A, Gupta A, Hasan N, Ahmad S, Kesharwani P, et al. Recent update on electrospinning and electrospun nanofibers: current trends and their applications. RSC Adv. 2022; 12(37):23808-23828.
5.    Chen L, Wang Sh, Yu Q, Topham PD, Chen Ch, Wang L. A comprehensive review of electrospinning block copolymers. Soft Matter. 2019; 15(12):2490-2510.
6.    Yang J. Biomedical applications and research progress of electrospinning technology and electrospinning nanofibers. 2022. ScienceOpen Preprints.
7.    Uhljar LÉ, Ambrus R. Electrospinning of potential medical devices (Wound Dressings, Tissue Engineering Scaffolds, Face Masks) and their regulatory approach. Pharmaceutics. 2023; 15(2):417.
8.    Ziaei Amiri F, Pashandi Z, Lotfibakhshaiesh N, Mirzaei-Parsa MJ, Ghanbari H, Faridi-Majidi R. Cell attachment effects of collagen nanoparticles on crosslinked electrospun nanofibers. Int J Artif Organs. 2021; 44(3):199-207.
9.    Zafari M, Mansouri Boroujeni M, Omidghaemi Sh, Yazdani A, Pourmotabed S, Hasanpour Dehkordi A, et al. Physical and biological properties of blend-electrospun polycaprolactone/chitosan-based wound dressings loaded with N-decyl-N, N-dimethyl-1-decanaminium chloride: An in vitro and in vivo study. J Biomed Mater Res B Appl Biomater. 2020; 108(8):3084-3098.
10.    Moon S, Gil M, Lee KJ. Syringeless electrospinning toward versatile fabrication of nanofiber. Web Sci Rep. 2017;7: 41424.
11.    Lee J, Lee KJ. Colloid Syringeless Electrospinning toward Nonwoven Nanofiber Web Containing a Massive Amount of Inorganic Fillers. Macromol Mater Eng. 2022;307:2100818.
12.    Jeong H, Hwang J, Kim J, Song WJ, Lee KJ. Syringeless electrospinning of PVDF/SiO2 as separator membrane for high-performance lithium-ion batteries. Materials Chemistry and Physics. 2022;288: 126354.
13.    Trupp F, Barella M, Cibils R, Goyanes S. In situ syringe rotation system for heavy microparticle suspension stability in electrospinning technique. Rev Sci Instrum. 2023; 94(3):033906. 
14.    Waqas M, Keirouz A, Putri MKS, Fazal F, Diaz Sanchez FJ, Ray D, et al. Design and development of a nozzle-free electrospinning device for the high-throughput production of biomaterial nanofibers. Med Eng Phys. 2021;92:80-87.
15.    Wu C, Wang H, Cao J. Tween-80 improves single/coaxial electrospinning of three-layered bioartificial blood vessel. J Mater Sci Mater Med. 2022;34(1):6.
16.    Pant B, Park M, Park SJ. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics. 2019; 11(7):305.
17.    Zhao Y, Chen Y, Kang Y, Wang L, Yang Sh, et al. Core-shell nanofiber containing large amount of flame retardants via coaxial dual-nozzle electrospinning as battery separators. 2019; 2019070201.
18.    Zheng Y, Cao H, Zhou Zh, Mei X, Yu L, Chen X, et al. Concentrated multi-nozzle electrospinning. fibers and polymers. 2019;20:1180–1186. 
19.    Jiang J, Zheng G, Wang X, Li W, Kang G, Chen H, et al. Arced Multi-Nozzle Electrospinning Spinneret for High-Throughput Production of Nanofibers. Micromachines (Basel). 2019; 11(1):27.
20.    Li Y, Dong A, He J. Innovation of critical bubble electrospinning and its mechanism. Polymers (Basel). 2020; 12(2):304.
21.    Nachev N, Spasova M, Manolova N, Rashkov I, Naydenov M. Electrospun polymer materials with fungicidal activity: A review. Molecules. 2022;27(17):5738.
22.    Xujing Zhang, Songsong Tang, Zhaokun Wu, Ye Chen, Zhen Li, Zongqian Wang, et al. Centrifugal spinning enables the formation of silver microfibers with nanostructures. Nanomaterials (Basel). 2022; 12(13):2145.
23.    Tindell RK, Busselle LP, Holloway JL. Magnetic fields enable precise spatial control over electrospun fiber alignment for fabricating complex gradient materials. J Biomed Mater Res A. 2023; 111(6):778-789.
24.    Guojie Xu, Xun Chen, Ziming Zhu, Peixuan Wu, Han Wang, Xindu Chen, et al. Pulse gas-assisted multi-needle electrospinning of nanofibers. Advanced Composites and Hybrid Materials. 2020; 3:98–113. 
25.    Liu Y., He J.H., Xu L., Yu J.Y. The principle of bubble electrospinning and its experimental verification. J Polym Eng. 2008;28:55–66.
26.    He J.H., Liu Y. Control of bubble size and bubble number in bubble electrospinning. Comput Math Appl. 2012; 64:1033–1035.
27.    Müller F., Jokisch S., Bargel H., Scheibel T. Centrifugal electrospinning enables the production of meshes of ultrathin polymer fibers. ACS Appl Polym Mater. 2020;2:4360–4367.
28.    Liu Y, Zhang X, Xia Y, Yang H. Magnetic‐field‐assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv. Mater. 2010; 22:2454–2457.
29.    Lee H, Ahn S, Choi H, Cho D, Kim G. Fabrication, characterization, and in vitro biological activities of melt-electrospun PLA micro/nanofibers for bone tissue regeneration. J Mater Chem B. 2013;1(30):3670-3677.
30.    Zhmayev Y, Pinge Sh, Shoorideh Gh, Shebert G, Kaur P, Liu H, et al. Controlling the placement of spherical nanoparticles in electrically driven polymer jets and its application to li-ion battery anodes. Small. 2016;12(40):5543-5553.
31.    Song JY, Ryu H, Lee JM, Bae SH, Lee JW, Yi Ch, et al. Conformal fabrication of an electrospun nanofiber mat on a 3d ear cartilage-shaped hydrogel collector based on hydrogel-assisted electrospinning. Nanoscale Res Lett. 2021; 16(1):116.
32.    Hejazi F, Mirzadeh H, Contessi N, Cristina Tanzi M, Faré S. Novel class of collector in electrospinning device for the fabrication of 3D nanofibrous structure for large defect load-bearing tissue engineering application. J Biomed Mater Res A. 2017; 105(5):1535-1548.
33.    Mi HY, Jing X, Yu E, Wang X,  Li Q, Turng LSh. Manipulating the structure and mechanical properties of thermoplastic polyurethane/polycaprolactone hybrid small diameter vascular scaffolds fabricated via electrospinning using an assembled rotating collector. J Mech Behav Biomed Mater. 2018; 78:433-441.
34.    Eom S, Park SM, Hong H, Kwon J, Oh SR, Kim J, et al. Hydrogel-assisted electrospinning for fabrication of a 3D complex tailored nanfiber macrostructure. ACS Appl Mater Interfaces. 2020;12(46):51212-51224.
35.    Zhang H, Lan D, Wu B, Chen X, Li X, Li Zh, et al. Eletrospun Piezoeletric Scaffold with external mechanical stimulation for promoting regeneration of peripheral nerve injury. Biomacromolecules. 2023; 24(7):3268-3282.
36.    Samadian H, Ehterami A, Sarrafzadeh A, Khastar H, Nikbakht M, Rezaei A, et al. Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: In vitro and in vivo study. Int J Biol Macromol. 2020; 150:380-388.
37.    Chen P, Xu Ch, Wu P, Liu K, Chen F, Chen Y, et al. Wirelessly Powered Electrical-Stimulation Based on Biodegradable 3D Piezoelectric Scaffolds Promotes the Spinal Cord Injury Repair. ACS Nano. 2022;16(10):16513-16528.
38.    Li Zh, Qi Y, Li Zh, Chen Sh, Geng H, Han J, et al. Nervous tract-bioinspired multi-nanoyarn model system regulating neural differentiation and its transcriptional architecture at single-cell resolution. Biomaterials. 2023; 298, 122146.
39.    Zheng Ch, Yang Z, Chen Sh, Zhang F, Rao Z, Zhao C, et al. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Heranostics. 2021; 11(6): 2917–2931.
40.    Xu J, Xi K, Tang J, Wang J, Tang Y, Wu L, et al. Engineered living oriented electrospun fibers regulate stem cell para-secretion and differentiation to promote spinal cord repair. Adv Healthc Mater. 2023;12(9):e2202785.
41.    Guan W, Gao H, Sun Sh, Zheng T, Wu L, Wang X, et al. Multi-scale, multi-level anisotropic silk fibroin/metformin scaffolds for repair of peripheral nerve injury. Int J Biol Macromol. 2023:246:125518.
42.    Tseng YY, Kao YCh, Liao JY, Chen WA, Liu ShJ. Biodegradable drug-eluting poly[lactic-co-glycol acid] nanofibers for the sustainable delivery of vancomycin to brain tissue: in vitro and in vivo studies. ACS Chem Neurosci. 2013; 4(9):1314-2131. 
43.    Zhang N, Lin J, Lin VPH, Milbreta U, Chin Sh, Chew EGY, et al. A 3D fiber-hydrogel based non-viral gene delivery platform reveals that micrornas promote axon regeneration and enhance functional recovery following spinal cord injury. Adv Sci (Weinh). 2021; 8(15):e2100805. 
44.    Liu ZhH, Huang YCh, Kuo ChY, Kuo ChY, Chin ChY, Yip PK, et al. Docosahexaenoic acid-loaded polylactic acid core-shell nanofiber membranes for regenerative medicine after spinal cord injury: In vitro and in vivo study. int J Mol Sci. 2020; 21(19): 7031.
45.    Thipkaew Ch, Wattanathorn J, Muchimapura S. Electrospun nanofibers loaded with quercetin promote the recovery of focal entrapment neuropathy in a rat model of streptozotocin-induced diabetes. Biomed Res Int. 2017; 2017493.
46.    Vigani B, Rossi S, Sandri G, Bonferoni MC, Rui M, Collina S, et al. Dual-functioning scaffolds for the treatment of spinal cord injury: Alginate nanofibers loaded with the sigma 1 receptor (S1R) agonist RC-33 in chitosan films. Mar Drugs. 2019; 18(1):21.
47.    Rao F, Wang Y, Zhang D, Lu Ch, Cao Zh, Sui J, et al. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics. 2020; 10(4): 1590–1603.
48.    Dolci LS, Perone RC, Gesù RD, Kurakula M, Gualandi Ch, Zironi E, et al. Design and in vitro study of a dual drug-loaded delivery system produced by electrospinning for the treatment of acute injuries of the central nervous system. Pharmaceutics. 2021; 13(6):848.
49.    Salles GN, Calió ML, Afewerki S, Pacheco-Soares C, Porcionatto M, Hölscher Ch, et al. Prolonged Drug-Releasing Fibers Attenuate Alzheimer’s Disease-like Pathogenesis. ACS Appl Mater Interfaces. 2018; 10(43):36693-36702.
50.    Reinhardt LS, Morás AM, Henn JG, Arantes PR, Ferro MB, Braganhol E, et al. Nek1-inhibitor and temozolomide-loaded microfibers as a co-therapy strategy for glioblastoma treatment. Int J Pharm. 2022; 617:121584.
51.    Raspa A, Marchini A, Pugliese R, Mauri M, Maleki M, Vasita R, et al. A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration. Nanoscale. 2016; 8(1):253-265.
52.    Yadav YCh, Pattnaik S. Hesperetin-loaded polymeric nanofibers: Assessment of bioavailability and neuroprotective effect. Drug Dev Ind Pharm. 2023; 49(2):240-247.
53.    Singh NK, Khaliq S, Patel M, Wheeler N’, Vedula S, Freeman JW, et al. Uric acid released from poly(ε-caprolactone) fibers as a treatment platform for spinal cord injury. J Tissue Eng Regen Med. 2021; 15(1):14-23.
54.    Musiał-Kulik M, Włodarczyk J, Stojko M, Karpeta-Jarząbek P, Pastusiak M, Janeczek H, et al. Bioresorbable, electrospun nonwoven for delayed and prolonged release of temozolomide and nimorazole. Eur J Pharm Biopharm. 2021; 161:29-36.
55.    Tang W, Fang F, Liu K, Huang Z, Li H, Yin Y, et al. Aligned Biofunctional Electrospun PLGA-LysoGM1 Scaffold for Traumatic Brain Injury Repair. ACS Biomater Sci Eng. 2020;6(4):2209-2218.
56.    Zhang Sh, Wang XJ, Li WSh, Xu XL, Hu JB, Kang XQ, et al. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury. Acta Biomater. 2018; 77:15-27.
57.    Wang Y, Guo Q, Wang W, Wang Y, Fang K, Wan Q, et al. Potential use of bioactive nanofibrous dural substitutes with controlled release of IGF-1 for neuroprotection after traumatic brain injury. Nanoscale. 2022; 14(48):18217-18230.
58.    Reis KP, Sperling LE, Teixeira C, Paim A, Alcântara B, Vizcay-Barrena G, et al. Application of PLGA/FGF-2 coaxial microfibers in spinal cord tissue engineering: an in vitro and in vivo investigation. Regen Med. 2018; 13(7):785-801.
59.    K P Reis, L E Sperling, C Teixeira, L Sommer, M Colombo, L S Koester, et al. VPA/PLGA microfibers produced by coaxial electrospinning for the treatment of central nervous system injury. Braz J Med Biol Res. 2020; 53(4):e8993.
60.    Fasolino I, Carvalho ED, Raucci MG, Bonadies I, Soriente A, Pezzella A, et al. Eumelanin decorated poly (lactic acid) electrospun substrates as a new strategy for spinal cord injury treatment. Biomater Adv. 2023; 146:213312.
61.    Chen Sh, Lien PH, Lin FH, Chou PY, Chen ChH, Chen ZhY, et al. Aligned core-shell fibrous nerve wrap containing Bletilla striata polysaccharide improves functional outcomes of peripheral nerve repair. Int J Biol Macromol. 2023; 241:124636.
62.    Madruga LYC, Kipper MJ. Expanding the repertoire of electrospinning: new and emerging biopolymers, techniques, and applications. Adv Healthc Mater. 2022; 11(4):e2101979.
63.    Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014; 463(2):127-136.
64.    Wang Zh, He H, Liu Sh, Wang H, Zeng Q, Liu Zh, et al. Air stable organic-inorganic perovskite Nanocrystals@Polymer nanofibers and waveguide lasing. Small. 2020; 16(43):e2004409.
65.    Kayaci F, Ozgit-Akgun C, Donmez I, Biyikli N, Tamer Uyar. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity. ACS Appl Mater Interfaces. 2012; 4(11):6185-6194.