Synergistic co-administration of doxorubicin and berberine by PLGA/PVA hybrid polymeric Nanoformulation for breast cancer treatment

Document Type : Research Paper

Authors

1 Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

2 Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

3 Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

4 Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnūrd, Iran

5 Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnūrd, Iran

10.22038/nmj.2024.79160.1945

Abstract

Objective(s): The clinical application of doxorubicin (DOX), a potent anticancer agent, is restricted by its serious side-effects and multidrug resistance. The combination strategy of antineoplastic drugs with Berberine (BBR) as plant-derived natural products enhances the cytotoxicity of chemotherapeutic drugs in cancer cells and also amends their toxicity in normal cells. 
Materials and Methods: In this study, the nanoparticles (NPs) of PLGA/PVA containing DOX and BBR were synthesized and optimized using the double emulsion-solvent evaporation method. The vesicular size, zeta potential, entrapment efficiency and also the drug release profile was surveyed at different temperatures and pH (37 °C, 7.4 and 42 °C, 5.2). The MTT assay was used to evaluate the cytotoxic effects of individual of DOX and BBR as a free form and as a nanoparticle form and also the combination of DOX- and BBR-loaded NPs on MCF-7 breast cancer cells. 
Results: The optimum formulation demonstrated that the vesicle size and zeta potential of DOX were 176.4 nm and -56.4 mV and BBR were 150.3 nm and -41.2 mV, respectively. Entrapment efficiency (EE%) for DOX and BBR was 91.0 ± 1.9% and 82.0 ± 1.8%, respectively. The DOX- and BBR -loaded NPs exhibited a sustained and controlled release pattern with the pH- and thermosensitive characteristic. Additionally, the loading of DOX and BBR into PLGA/PVA NPs had a higher toxicity against cancer cells when compared with free forms and the combination of DOX and BBR was exhibited an augmented antineoplastic activity against the cancer cell death. 
Conclusion: The findings of this study suggest that the coadministration of DOX with BBR using the PLGA/PVA NPs may have the potential clinical application in sensitization cells to DOX and generates synergistic antitumor effects.

Keywords


1.    Hemati M, Haghiralsadat F, Yazdian F, Jafari F, Moradi A, Malekpour-Dehkordi Z. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif Cells Nanomed Biotechnol. 2019;47(1):1295-1311.
2.    Andisheh F, Oroojalian F, Shakour N, Ramezani M, Shamsara J, Khodaverdi E, et al. Docetaxel encapsulation in nanoscale assembly micelles of folate-PEG-docetaxel conjugates for targeted fighting against metastatic breast cancer in vitro and in vivo. Int J Pharm. 2021;605:120822.
3.    Zhang R, Zhang Y, Zhang Y, Wang X, Gao X, Liu Y, et al. Ratiometric delivery of doxorubicin and berberine by liposome enables superior therapeutic index than Doxil Asian J Pharm Sci. 2020;15(3):385-396.
4.    Yaghoubi F, Motlagh NSH, Naghib SM, Haghiralsadat F, Jaliani HZ, Moradi A. A functionalized graphene oxide with improved cytocompatibility for stimuli-responsive co-delivery of curcumin and doxorubicin in cancer treatment. Sci Rep. 2022;12(1):1959.
5.    Oroojalian F, Karimzadeh S, Javanbakht S, Hejazi M, Baradaran B, Webster TJ, et al. Current trends in stimuli-responsive nanotheranostics based on metal–organic frameworks for cancer therapy. Mater Today Energy 2022;57:192-224.
6.    Abtahi NA, Naghib SM, Ghalekohneh SJ, Mohammadpour Z, Nazari H, Mosavi SM, et al. Multifunctional stimuli-responsive niosomal nanoparticles for co-delivery and co-administration of gene and bioactive compound: In vitro and in vivo studies. J Chem Eng. 2022;429:132090.
7.    Ghafari M, Haghiralsadat F, Khanamani Falahati‐pour S, Zavar Reza J. Development of a novel liposomal nanoparticle formulation of cisplatin to breast cancer therapy. J Cell Biochem. 2020;121(7):3584-3592.
8.    Yaghoubi F, Naghib SM, Motlagh NSH, Haghiralsadat F, Jaliani HZ, Tofighi D, et al. Multiresponsive carboxylated graphene oxide-grafted aptamer as a multifunctional nanocarrier for targeted delivery of chemotherapeutics and bioactive compounds in cancer therapy. Nanotechnol Rev. 2021;10(1):1838-1852.
9.    Rashidi A, Omidi M, Choolaei M, Nazarzadeh M, Yadegari A, Haghierosadat F, et al. Electromechanical properties of vertically aligned carbon nanotube. Adv Mater Res. 2013;705:332-336.
10.    Afereydoon S, Haghiralsadat F, Hamzian N, Shams A, Hemati M, Naghib SM, et al. Multifunctional PEGylated Niosomal Nanoparticle-Loaded Herbal Drugs as a Novel Nano-Radiosensitizer and Stimuli-Sensitive Nanocarrier for Synergistic Cancer Therapy. Front Bioeng Biotechnol. 2022;10:917368.
11.    Kim DG, Choi JW, Jo IJ, Kim MJ, Lee HS, Hong SH, et al. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep. 2020;21(1):258-266.
12.    Li W, Li D, Kuang H, Feng X, Ai W, Wang Y, et al. Berberine increases glucose uptake and intracellular ROS levels by promoting Sirtuin 3 ubiquitination. Biomed Pharmacother. 2020;121:109563.
13.    Javed Iqbal M, Quispe C, Javed Z, Sadia H, Qadri QR, Raza S, et al. Nanotechnology-based strategies for berberine delivery system in cancer treatment: pulling strings to keep berberine in power. Front Mol Biosci. 2021;7:624494.
14.    Taebpour M, Arasteh F, Akhlaghi M, Haghirosadat BF, Oroojalian F, Tofighi D. Fabrication and characterization of PLGA polymeric nanoparticles containing Berberine and its cytotoxicity on breast cancer cell (MCF-7). Nanomed Res J. 2021;6(4):396-408.
15.    Mirrezaei N, Yazdian-Robati R, Oroojalian F, Sahebkar A, Hashemi M. Recent developments in nano-drug delivery systems loaded by phytochemicals for wound healing. Mini-Rev Med Chem. 2020;20(18):1867-1878.
16.    Chen Q, Hou Y, Li D, Ding Z, Xu X, Hao B, et al. Berberine induces non-small cell lung cancer apoptosis via the activation of the ROS/ASK1/JNK pathway. Ann Transl Med.  2022;10(8).
17.    Devarajan N, Jayaraman S, Mahendra J, Venkatratnam P, Rajagopal P, Palaniappan H, et al. Berberine—A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytother Res. 2021;35(6):3059-3077.
18.    Oroojalian F, Rezayan AH, Shier WT, Abnous K, Ramezani M. Megalin-targeted enhanced transfection efficiency in cultured human HK-2 renal tubular proximal cells using aminoglycoside-carboxyalkyl-polyethylenimine-containing nanoplexes. Int J Pharm. 2017;523(1):102-120.
19.    Fattahi Bafghi A, Haghirosadat BF, Yazdian F, Mirzaei F, Pourmadadi M, Pournasir F, et al. A novel delivery of curcumin by the efficient nanoliposomal approach against Leishmania major. Prep Biochem Biotech.  2021;51(10):990-997.
20.    Taebpour M, Akhlaghi M, Shahriary S, Hajihosseini S, Haghiralsadat F, Oroojalian F, et al. Synthesis, physicochemical characterization and pharmaceutical function of niosomal nanoparticles-encapsulated bioactive compound for osteosarcoma treatment. Nanomed J. 2022;9(3):205-215.
21.    Ebrahimian M, Mahvelati F, Malaekeh-Nikouei B, Hashemi E, Oroojalian F, Hashemi M. Bromelain loaded lipid-polymer hybrid nanoparticles for oral delivery: Formulation and characterization. Appl Biochem Biotechnol. 2022;194(8):3733-3748.
22.    Pieper S, Langer K. Doxorubicin-loaded PLGA nanoparticles-a systematic evaluation of preparation techniques and parameters. Mater Today: Proceedings. 2017;4:S188-S192.
23.    Ahmadi F, Bahmyari M, Akbarizadeh A, Alipour S. Doxorubicin-verapamil dual loaded PLGA nanoparticles for overcoming P-glycoprotein mediated resistance in cancer: Effect of verapamil concentration. J Drug Deliv Technol. 2019;53:101206.
24.    Khanal S, Adhikari U, Rijal NP, Bhattarai SR, Sankar J, Bhattarai N. pH-responsive PLGA nanoparticle for controlled payload delivery of diclofenac sodium. J Funct Biomater. 2016;7(3):21.
25.    Gholami Z, Dadmehr M, Jelodar NB, Hosseini M, Parizi AP. One-pot biosynthesis of CdS quantum dots through in vitro regeneration of hairy roots of Rhaphanus sativus L. and their apoptosis effect on MCF-7 and AGS cancerous human cell lines. Materials Research Express. 2020;7(1):015056.
26.    Pishavar E, Oroojalian F, Ramezani M, Hashemi M. Cholesterol‐conjugated PEGylated PAMAM as an efficient nanocarrier for plasmid encoding interleukin‐12 immunogene delivery toward colon cancer cells. Biotechnol Prog. 2020;36(3):e2952.
27.    Nia AH, Behnam B, Taghavi S, Oroojalian F, Eshghi H, Shier WT, et al. Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube–succinate–polyethylenimine conjugates as non-viral gene carriers. MedChemComm. 2017;8(2):364-375.
28.    Karimi MA, Dadmehr M, Hosseini M, Korouzhdehi B, Oroojalian F. Sensitive detection of methylated DNA and methyltransferase activity based on the lighting up of FAM-labeled DNA quenched fluorescence by gold nanoparticles. RSC Adv. 2019;9(21):12063-12069.
29.    Ghashghaei M, Akhlaghi M. Investigation of nanoniosomal formulation containing doxorubicin effect on ovarian cancer cell line (OVCAR-3 cell line). New cell Mol Biotech J. 2021;11(43):46-62.
30.    Ito F, Fujimori H, Honnami H, Kawakami H, Kanamura K, Makino K. Study of types and mixture ratio of organic solvent used to dissolve polymers for preparation of drug-containing PLGA microspheres. Europ Polym J. 2009;45(3):658-667.
31.    Alkholief M, Kalam MA, Anwer MK, Alshamsan A. Effect of solvents, stabilizers and the concentration of stabilizers on the physical properties of poly (d, l-lactide-co-glycolide) nanoparticles: Encapsulation, in vitro release of indomethacin and cytotoxicity against HepG2-cell. Pharmaceutics. 2022;14(4):870.
32.    Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57.
33.    Akhlaghi M, Ebrahimpour M, Ansari K, Parnian F, Zarezadeh Mehrizi M, Taebpour M. Synthesis, study and characterization of nano niosomal system containing Glycrrizha glabra extract in order to improve its therapeutic effects. New cell Mol Biotech J. 2021;11(42):65-82.
34.    Jeon S, Clavadetscher J, Lee D-K, Chankeshwara SV, Bradley M, Cho W-S. Surface charge-dependent cellular uptake of polystyrene nanoparticles. Nanomaterials. 2018;8(12):1028.
35.    Kettler K, Veltman K, van De Meent D, van Wezel A, Hendriks AJ. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem. 2014;33(3):481-492.
36.    Zhang D, Wei L, Zhong M, Xiao L, Li H-W, Wang J. The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy. Chem Sci. 2018;9(23):5260-5269.
37.    Alamdari SG, Alibakhshi A, de la Guardia M, Baradaran B, Mohammadzadeh R, Amini M, Kesharwani P, Mokhtarzadeh A, Oroojalian F, Sahebkar A. Conductive and semiconductive nanocomposite‐based hydrogels for cardiac tissue engineering. Adv Healthc Mater. 2022;11(18):2200526.
38.    Yoo J, Won Y-Y. Phenomenology of the initial burst release of drugs from PLGA microparticles. ACS Biomater Sci Eng. 2020;6(11):6053-6062.
39.    Malinovskaya Y, Melnikov P, Baklaushev V, Gabashvili A, Osipova N, Mantrov S, et al. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. Int J Pharm. 2017;524(1-2):77-90.
40.    Scheeren LE, Nogueira-Librelotto DR, Macedo LB, de Vargas JM, Mitjans M, Vinardell MP, et al. Transferrin-conjugated doxorubicin-loaded PLGA nanoparticles with pH-responsive behavior: a synergistic approach for cancer therapy. J Nanoparticle Res. 2020;22:1-18.
41.    Montha W, Maneeprakorn W, Buatong N, Tang I-M, Pon-On W. Synthesis of doxorubicin-PLGA loaded chitosan stabilized (Mn, Zn) Fe2O4 nanoparticles: biological activity and pH-responsive drug release. Mater Sci Eng C. 2016;59:235-240.
42.    Zhao J, Yang H, Li J, Wang Y, Wang X. Fabrication of pH-responsive PLGA (UCNPs/DOX) nanocapsules with upconversion luminescence for drug delivery. Sci Rep. 2017;7(1):1-11.
43.    Ibrahim WN, Muizzuddin Bin Mohd Rosli L, Doolaanea AA. Formulation, cellular uptake and cytotoxicity of thymoquinone-loaded plga nanoparticles in malignant melanoma cancer cells. Int J Nanomedicine. 2020:8059-8074.
44.    Watcharadulyarat N, Rattanatayarom M, Ruangsawasdi N, Patikarnmonthon N. PEG–PLGA nanoparticles for encapsulating ciprofloxacin. Sci Rep. 2023;13(1):266.
45.    Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm. 2021;604:120733.
46.    Akbari P, Taebpour M, Akhlaghi M, Hasan SH, Shahriyari S, Parsaeian M, et al. Regulation of the P53 tumor suppressor gene and the Mcl-2 oncogene expression by an active herbal component delivered through a smart thermo-pH-sensitive PLGA carrier to improve Osteosarcoma treatment. Med Oncol. 2024;41(3):68.
47.    Guo J, Wu SH, Ren WG, Wang XL, Yang AQ. Anticancer activity of bicalutamide-loaded PLGA nanoparticles in prostate cancers. Exp Ther Med. 2015;10(6):2305-2310.
48.    Yang Y, Yin Y, Zhang J, Zuo T, Liang X, Li J, et al. Folate and borneol modified bifunctional nanoparticles for enhanced oral absorption. Pharmaceutics. 2018;10(3):146.
49.    Pan Y, Shao D, Zhao Y, Zhang F, Zheng X, Tan Y, et al. Berberine reverses hypoxia-induced chemoresistance in breast cancer through the inhibition of AMPK-HIF-1α. Int J Biol Sci. 2017;13(6):794.
50.    Zhang Y, Guo L, Huang J, Sun Y, He F, Zloh M, et al. Inhibitory effect of berberine on broiler P-glycoprotein expression and function: in situ and in vitro studies. Int J Mol Sci. 2019;20(8):1966.
51.    Almatroodi SA, Alsahli MA, Rahmani AH. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules. 2022;27(18):5889.
52.    Tong N, Zhang J, Chen Y, Li Z, Luo Y, Zuo H, et al. Berberine sensitizes mutliple human cancer cells to the anticancer effects of doxorubicin in vitro. Oncol Lett. 2012;3(6):1263-1267.
53.    Zheng X, Zhao Y, Jia Y, Shao D, Zhang F, Sun M, et al. Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials. 2021;271:120716.
54.    Chen X, Zhang Y, Zhu Z, Liu H, Guo H, Xiong C, et al. Protective effect of berberine on doxorubicin‑induced acute hepatorenal toxicity in rats. Mol Med Rep. 2016;13(5):3953-3960.
55.    Wu Y-Z, Zhang L, Wu Z-X, Shan T-t, Xiong C. Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid Med Cell Longev. 2019:2019:2150394.