Enhancing peripheral nerve regeneration: A novel nanofibrous nerve conduit with bioactive poly(ɛ-caprolactone), collagen, and retinoic acid nanofiber

Document Type : Research Paper

Authors

1 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

2 Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran

3 Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA

4 Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran

10.22038/nmj.2024.77144.1878

Abstract

Objective(s): Peripheral nerve injury (PNI) is a critical clinical issue primarily caused by trauma. Tissue engineering approaches using nanofiber scaffolds have been extensively explored to improve material quality and create an environment resembling the natural extracellular matrix (ECM). 
Materials and Methods: In this study, we employed electrospinning technique to fabricate a composite scaffold comprising poly(ɛ-caprolactone) (PCL) and collagen (Col) loaded with all-trans retinoic acid (RA), a neural patterning and signaling chemical known to promote nerve regeneration. 
Results: The synthesized nanofiber scaffold exhibited a diameter of 391±79 nm and a tensile strength of 250±13 MPa, providing sufficient support for native peripheral nerve regeneration. The inclusion of Col enhanced the scaffold’s hydrophilic behavior (contact angle: 43±6°), ensuring stability in an aqueous solution. Moreover, the results demonstrated the proliferation and adhesion of nerve cells on the scaffold, aligning with the directions of the warp and weft of the nanofiber mat. Importantly, the scaffolds demonstrated non-toxicity, making them a promising substitute for the native ECM for enhanced cell attachment and proliferation. Finally, immune-histochemistry analyses further confirmed that the scaffolds supported the release and growth of neurites, promoting cell differentiation toward nerve repair. 
Conclusion: The RA-loaded scaffolds demonstrated the enhanced biocompatibility, supported neurite growth, and showed potential as a capable candidate for nerve regeneration.

Keywords


1.    Robinson LR.Traumatic injury to peripheral nerves. Muscle Nerve. (2022); 66(6): 661-670.
2.    Taylor CA, Braza D, Rice JB, Dillingham T. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008; 87(5):381-385.
3.    Evans GR. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat Rec. 2001;263(4):396-404.
4.    Robinson LR. Traumatic injury to peripheral nerves. Suppl Clin Neurophysiol. 2004;57:173-186.
5.    Bridge PM, Ball DJ, Mackinnon SE, Nakao Y, Brandt K, Hunter DA, Hertl C. Nerve crush injuries—a model for axonotmesis. Exp Neurol. 1994;127(2):284-290.
6.    Sunderland S. A classification of peripheral nerve injuries producing loss of function.Brain. 1951;74(4):491-516.
7.    Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol. 2008;119(9):1951-1965.
8.    Seddon HJ, Medawar PB, Smith H. Rate of regeneration of peripheral nerves in man. J Physiol. 1943;102(2):191.
9.    Deumens R, Bozkurt A, Meek MF, Marcus MA, Joosten EA, Weis J, et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol. 2010;92(3):245-276.
10.    Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci VJ. Peripheral nerve conduits: technology update. Med Devices (Auckl). 2014:405-424.
11.    Muheremu A, Ao Q. Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. International BR. 2015;2015(1):237507.
12.    Houshyar S, Bhattacharyya A, Shanks R. Peripheral nerve conduit: materials and structures. ACS Chem Neurosci. 2019;10(8):3349-3365.
13.    Potucek RK, Kemp SW, Syed NI, Midha R. Peripheral nerve injury, repair, and regeneration. InStrategies in Regenerative Medicine: Integrating Biology with Materials Design. Springer. 2008:1-20.
14.    Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Br. 2000;25(3):391-414.
15.    Pabari A, Lloyd-Hughes H, Seifalian AM, Mosahebi A. Nerve conduits for peripheral nerve surgery. Plast Reconstr Surg. 2014;133(6):1420-1430.
16.    Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, et al.Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater. 2022;11:57-76.
17.    Zarrintaj P, Zangene E, Manouchehri S, Amirabad LM, Baheiraei N, Hadjighasem MR, et al. Conductive biomaterials as nerve conduits: recent advances and future challenges. Appl Mater Today. 2020;20:100784.
18.    Singh D, Harding AJ, Albadawi E, Boissonade FM, Haycock JW, Claeyssens F. Additive manufactured biodegradable poly (glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomater. 2018;78:48-63.
19.    Itai S, Suzuki K, Kurashina Y, Kimura H, Amemiya T, Sato K, et al. Cell-encapsulated chitosan-collagen hydrogel hybrid nerve guidance conduit for peripheral nerve regeneration. Biomed Microdevices. 2020;22:1-9.
20.    Abidian MR, Daneshvar ED, Egeland BM, Kipke DR, Cederna PS, Urbanchek MG. Hybrid conducting polymer–hydrogel conduits for axonal growth and neural tissue engineering. Adv Healthc Mater. 2012; 1(6):762-767.
21.    Schlosshauer B, Dreesmann L, Schaller HE, Sinis N. Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery. 2006;59(4):740-748.
22.    Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci VJ. Peripheral nerve conduits: technology update. Med Devices (Auckl). 2014:405-424.
23.    Verreck G, Chun I, Li Y, Kataria R, Zhang Q, Rosenblatt J, et al. Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials. 2005 ;26(11):1307-1315.
24.    Janoušková O. Synthetic polymer scaffolds for soft tissue engineering. Physiol Res. 2018;67.
25.    Gautam S, Ambwani S. Tissue engineering: new paradigm of biomedicine. Biosci., Biotech. Res. Asia. 2019;16(3):521-532.
26.    Carvalho JL, De Carvalho PH, Gomes DA, De Goes AM. Innovative strategies for tissue engineering. Advances in Biomaterials Science and Biomedical Applications.Springer. 201;11:295.
27.    Hu J, Tian L, Prabhakaran MP, Ding X, Ramakrishna S. Fabrication of nerve growth factor encapsulated aligned poly (ε-caprolactone) nanofibers and their assessment as a potential neural tissue engineering scaffold. Polymers. 2016;8(2):54.
28.    Bhang SH, Jeong SI, Lee TJ, Jun I, Lee YB, Kim BS, et al. Electroactive electrospun polyaniline/poly [(L‐lactide)‐co‐(ε‐caprolactone)] fibers for control of neural cell function. Macromol Biosci. 2012;12(3):402-411.
29.    Nelson DL, Balian G. The effect of retinoic acid on collagen synthesis by human dermal fibroblasts. Coll Relat Res. 1984;4(2):119-128.
30.    Yen CM, Shen CC, Yang YC, Liu BS, Lee HT, Sheu ML, et al. Novel electrospun poly (ε-caprolactone)/type I collagen nanofiber conduits for repair of peripheral nerve injury. Neural Regen Res. 2019 ;14(9):1617-1625.
31.    Swindle-Reilly KE, Paranjape CS, Miller CA. Electrospun poly (caprolactone)-elastin scaffolds for peripheral nerve regeneration. Prog Biomater.2014;3:1-8.
32.    O’Leary C, Soriano L, Fagan-Murphy A, Ivankovic I, Cavanagh B, O’Brien FJ, et al. The fabrication and in vitro evaluation of retinoic acid-loaded electrospun composite biomaterials for tracheal tissue regeneration. Front Bioeng Biotechnol. 2020;8:190.
33.    Chakrapani VY, Gnanamani A, Giridev VR, Madhusoothanan M, Sekaran G. Electrospinning of type I collagen and PCL nanofibers using acetic acid. J Appl Polym Sci. 2012 ;125(4):3221-3227.
34.    Khadem Mohtaram N, Ko J, Carlson M, Byung-Guk Jun M, Willerth S. Nanofabrication of Electrospun Fibers for Controlled Release of Retinoic Acid. 8th International Conference on MicroManufacturing (ICOMM) 2013.
35.    Hackett JM, Dang TT, Tsai EC, Cao X. Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation. Materials. 2010;3(6):3714-3728.
36.    Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol. 2018;60:506-532.
37.    Mohamadi, F., Ebrahimi‐Barough, S., Reza Nourani, M., Ali Derakhshan, M., Goodarzi, V., Sadegh Nazockdast, et al.Electrospun nerve guide scaffold of poly (ε caprolactone) /collagen/nanobioglass: an in vitro study in peripheral nerve tissue engineering. J Biomed Mater Res A, 2017;105(7):1960-1972.
38.    Mohamadi, F., Ebrahimi-Barough, S., Nourani, M.R., Mansoori, K., Salehi, M., Alizadeh, A.A., et al. Enhanced sciatic nerve regeneration by human endometrial stem cells in an electrospun poly (ε-caprolactone)/collagen/NBG nerve conduit in rat. Artif Cells Nanomed Biotechnol. 2018;46(8):1731-1743.
39.    Hackett JM, Dang TT, Tsai EC, Cao X. Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation. Materials. 2010;3(6):3714-3728.
40.    Ahmadi P, Nazeri N, Derakhshan MA, Ghanbari H. Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol. 2021;180:590-598.
41.    Nazeri N, Karimi R, Ghanbari H. The effect of surface modification of poly‐lactide‐co‐glycolide/carbon nanotube nanofibrous scaffolds by laminin protein on nerve tissue engineering. J Biomed Mater Res A. 2021;109(2):159-169.
42.    Miele D, Catenacci L, Rossi S, Sandri G, Sorrenti M, Terzi A, et al. Collagen/PCL nanofibers electrospun in green solvent by DOE assisted process. An insight into collagen contribution. Materials. 2020;13(21):4698.
43.    Zander NE, Orlicki JA, Rawlett AM, Beebe TP. Surface-modified nanofibrous biomaterial bridge for the enhancement and control of neurite outgrowth. Biointerphases. 2010;5(4):149-158.
44.    Huo P, Han X, Zhang W, Zhang J, Kumar P, Liu B. Electrospun nanofibers of polycaprolactone/collagen as a sustained-release drug delivery system for artemisinin. Pharmaceutics. 2021;13(8):1228.
45.    Hu J, Tian L, Prabhakaran MP, Ding X, Ramakrishna S. Fabrication of nerve growth factor encapsulated aligned poly (ε-caprolactone) nanofibers and their assessment as a potential neural tissue engineering scaffold. Polymers. 2016;8(2):54.
46.    Bhang SH, Jeong SI, Lee TJ, Jun I, Lee YB, Kim BS, Shin H. Electroactive electrospun polyaniline/poly [(L‐lactide)‐co‐(ε‐caprolactone)] fibers for control of neural cell function. Macromol Biosci. 2012;12(3):402-411.
47.    Gümüşderelioğlu M, Dalkıranoğlu S, Aydın RS, Çakmak S. A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix. J Biomed Mater Res A. 2011;98(3):461-472.
48.    Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials. 2002;23(24):4811-4818.
49.    Venugopal JR, Zhang Y, Ramakrishna S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs.2006;30(6): 440-446.
50.    Pereira AD, Pereira LG, Barbosa LA, Fialho SL, Pereira BG, Patricio PS, et al. Efficacy of methotrexate-loaded poly (ε-caprolactone) implants in Ehrlich solid tumor-bearing mice. Drug Deliv. 2013;20(3-4):168-179.
51.    Afrash H, Nazeri N, Davoudi P, FaridiMajidi R, Ghanbari H. Development of a bioactive scaffold based on NGF containing PCL/chitosan nanofibers for nerve regeneration.Biointerface Res Appl Chem. 2021;11:12606-12617.
52.    Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3(3):321-330.
53.    Yu W, Zhao W, Zhu C, Zhang X, Ye D, Zhang W, et al. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly (ε-caprolactone) nerve conduit with tailored degradation rate. BMC Neurosci. 2011;12:1-4.
54.    Jiang X, Cao HQ, Shi LY, Ng SY, Stanton LW, Chew SY. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment. Acta Biomater. 2012;8(3):1290-1302.
55.    Damanik FF, van Blitterswijk C, Rotmans J, Moroni L. Enhancement of synthesis of extracellular matrix proteins on retinoic acid loaded electrospun scaffolds. J Mater Chem B. 2018 ; 6(40) : 6468-6480.