Mycofabrication of selenium and tellurium nanoparticles by using Penicillium rubens: In-vitro physicochemical, antimicrobial, antioxidant, urease inhibitory, thrombolytic and anticoagulant performance

Document Type : Research Paper

Authors

1 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Shahid Beheshti University of Medical Sciences, Tehran, Iran

10.22038/nmj.2024.77665.1896

Abstract

Objective(s): This study aimed to investigate the extracellular synthesis of colloidal nanosized selenium (SeNPs) and tellurium (TeNPs) particles using the supernatant of Penicillium rubens, and to evaluate their biological activities.
Materials and Methods: Colloidal SeNPs and TeNPs were characterized using energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FT-IR) analysis. Biological tests included antimicrobial tests using the well diffusion assay, broth microdilution assay, and flow cytometry, as well as antioxidant, urease inhibitory, thrombolytic, and anticoagulant assays.
Results: The average hydrodynamic diameters of the synthesized SeNPs and TeNPs were determined to be 43.91 nm and 37.17 nm, respectively. TeNPs exhibited significant antibacterial activity against Escherichia coli with an inhibition zone (IZ) of 27 mm and a minimum inhibition concentration (MIC) of 2.5 mg.mL-1. Flow cytometry analysis showed a dose-dependent bacterial cell death with TeNPs. However, SeNPs did not display any antibacterial activity against Escherichia coli. Neither TeNPs nor SeNPs showed antimicrobial properties against Staphylococcus aureus and Candida albicans. Both TeNPs and SeNPs exhibited antioxidant properties, inhibiting 43.90±1.98% and 57.93±2.20% of DPPH free radicals at 1 mg.mL-1, respectively. Additionally, the mycofabricated NPs displayed a dose-dependent urease inhibitory activity with maximum inhibition of 63.81±1.69% and 46.95±3.39% at 1 mg.mL-1, respectively. However, neither TeNPs nor SeNPs showed thrombolytic or anticoagulant activity at 1 mg.mL-1.
Conclusion: Our findings demonstrate that mycofabricated nanosized selenium and tellurium particles possess significant antioxidant and urease inhibitory properties, with TeNPs showing promising antibacterial activity against E. coli. These results suggest potential applications for these nanoparticles in biomedical and agricultural fields.

Keywords


1.    Qamar SA, Asgher M, Khalid N, Sadaf M. Nanobiotechnology in health sciences: Current applications and future perspectives. Biocatal Agric Biotechnol. 2019; 22: 101388.
2.    Pokrajac L, Abbas A, Chrzanowski W, Dias GM, Eggleton BJ, Maguire S, Maine E, Malloy T, Nathwani J, Nazar L. Nanotechnology for a sustainable future: Addressing global challenges with the international network for sustainable nanotechnology. ACS Publications; 2021; 15(12): 18608-18623.
3.    Saleh TA. Nanomaterials: Classification, properties, and environmental toxicities. Environ Technol Innov. 2020; 20: 101067.
4.    Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res. 2021; 199: 344-370.
5.    Gebreslassie YT, Gebretnsae HG. Green and cost-effective synthesis of tin oxide nanoparticles: A review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res Lett. 2021; 16(1): 97.
6.    Harish V, Ansari MM, Tewari D, Yadav AB, Sharma N, Bawarig S, García-Betancourt M-L, Karatutlu A, Bechelany M, Barhoum A. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review. J Taiwan Inst Chem Eng. 2023; 149: 105010.
7.    Lee KX, Shameli K, Yew YP, Teow S-Y, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine. 2020; 275-300.
8.    El-Seedi HR, El-Shabasy RM, Khalifa SA, Saeed A, Shah A, Shah R, Iftikhar FJ, Abdel-Daim MM, Omri A, Hajrahand NH. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Adv. 2019; 9(42): 24539-24559.
9.    Madanayake NH, Adassooriya NM. Fungi-based synthesis of nanoparticles and its large-scale production possibilities. Mycosynth Nanomater: Perspect Challenges. 2023; 215.
10.    Šebesta M, Vojtková H, Cyprichová V, Ingle AP, Urík M, Kolenčík M. Mycosynthesis of metal-containing nanoparticles—fungal metal resistance and mechanisms of synthesis. Int J Mol Sci. 2022; 23(22): 14084.
11.    Iacovelli R, Bovenberg RA, Driessen AJ. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol. 2021; 48(7-8): kuab045.
12.    Boruta T, Ścigaczewska A, Ruda A, Bizukojć M. Effects of the coculture initiation method on the production of secondary metabolites in bioreactor cocultures of Penicillium rubens and Streptomyces rimosus. Molecules. 2023; 28(16): 6044.
13.    Conrado R, Gomes TC, Roque GS, De Souza AO. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. Antibiotics. 2022; 11(11): 1604.
14.    Venkatachalam P, Nadumane VK. Modulation of Bax and Bcl-2 genes by secondary metabolites produced by Penicillium rubens JGIPR9 causes the apoptosis of cancer cell lines. Mycology. 2021; 12(2): 69-81.
15.    Li S-Y, Yang X-Q, Chen J-X, Wu Y-M, Yang Y-B, Ding Z-T. The induced cryptic metabolites and antifungal activities from culture of Penicillium chrysogenum by supplementing with host Ziziphus jujuba extract. Phytochemistry. 2022; 203: 113391.
16.    Kisová Z, Šoltýsová A, Bučková M, Beke G, Puškárová A, Pangallo D. Studying the gene expression of Penicillium rubens under the effect of eight essential oils. Antibiotics. 2020; 9(6): 343.
17.    Din G, Hassan A, Dunlap J, Ripp S, Shah A. Cadmium tolerance and bioremediation potential of filamentous fungus Penicillium chrysogenum FMS2 isolated from soil. Int J Environ Sci Technol. 2021; 1-10.
18.    Beleneva I, Kharchenko U, Kukhlevsky A, Boroda A, Izotov N, Gnedenkov A, Egorkin V. Biogenic synthesis of selenium and tellurium nanoparticles by marine bacteria and their biological activity. World J Microbiol Biotechnol. 2022; 38(11): 188.
19.    Escobar-Ramírez MC, Castañeda-Ovando A, Pérez-Escalante E, Rodríguez-Serrano GM, Ramírez-Moreno E, Quintero-Lira A, Contreras-López E, Añorve-Morga J, Jaimez-Ordaz J, González-Olivares LG. Antimicrobial activity of Se-nanoparticles from bacterial biotransformation. Fermentation. 2021; 7(3): 130.
20.    Vahidi H, Kobarfard F, Alizadeh A, Saravanan M, Barabadi H. Green nanotechnology-based tellurium nanoparticles: Exploration of their antioxidant, antibacterial, antifungal and cytotoxic potentials against cancerous and normal cells compared to potassium tellurite. Inorg Chem Commun. 2021; 124: 108385.
21.    Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, Dahoumane SA. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties, and biomedical applications. Int J Mol Sci. 2021; 22(3): 989.
22.    Imran M, Waqar S, Ogata K, Ahmed M, Noreen Z, Javed S, Bibi N, Bokhari H, Amjad A, Muddassar M. Identification of novel bacterial urease inhibitors through molecular shape and structure based virtual screening approaches. RSC Adv. 2020; 10(27): 16061-16070.
23.    Devi CS, Mohanasrinivasan V, Tarafder A, Shishodiya E, Vaishnavi B, JemimahNaine S. Combination of clot buster enzymes and herbal extracts: A new alternative for thrombolytic drugs. Biocatal Agric Biotechnol. 2016; 8: 152-157.
24.    Barabadi H, Mobaraki K, Jounaki K, Sadeghian-Abadi S, Vahidi H, Jahani R, Noqani H, Hosseini O, Ashouri F, Amidi S. Exploring the biological application of Penicillium fimorum-derived silver nanoparticles: In vitro physicochemical, antifungal, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic performance. Heliyon. 2023; 9(6): e16853.
25.    Barabadi H, Kobarfard F, Vahidi H. Biosynthesis and characterization of biogenic tellurium nanoparticles by using Penicillium chrysogenum PTCC 5031: A novel approach in gold biotechnology. Iranian J Pharm Res: IJPR. 2018; 17(Suppl 2): 87.
26.    Fardsadegh B, Jafarizadeh-Malmiri H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process Synth. 2019; 8(1): 399-407.
27.    Pyrzynska K, Sentkowska A. Biosynthesis of selenium nanoparticles using plant extracts. J Nanostruct Chem. 2022; 12(4): 467-480.
28.    Zhang H, Zhou H, Bai J, Li Y, Yang J, Ma Q, Qu Y. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids Surf A Physicochem Eng Asp. 2019; 571: 9-16.
29.    Feng X, Huang G, Qiu J, Peng L, Luo K, Liu D, Han P. Dynamic light scattering in flowing dispersion. Opt Commun. 2023; 531: 129225.
30.    Mudalige T, Qu H, Van Haute D, Ansar SM, Paredes A, Ingle T. Chapter 11 - Characterization of nanomaterials: Tools and challenges. In: López Rubio A, Fabra Rovira MJ, Martínez Sanz M, Gómez-Mascaraque LG, editors. Nanomaterials for food applications. Elsevier; 2019. p. 313-353.
31.    Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018; 10(2): 61.
32.    Samimi S, Maghsoudnia N, Eftekhari RB, Dorkoosh F. Chapter 3 - Lipid-based nanoparticles for drug delivery systems. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Characterization and biology of nanomaterials for drug delivery. Elsevier; 2019. p. 47-76.
33.    Abo Elsoud MM, Al-Hagar OEA, Abdelkhalek ES, Sidkey NM. Synthesis and investigations on tellurium myconanoparticles. Biotechnol Rep. 2018; 18: e00247.
34.    Trinh KTL, Lee NY. Recent methods for the viability assessment of bacterial pathogens: Advances, challenges, and future perspectives. Pathogens. 2022; 11(9): 1163.
35.    Tang A, Ren Q, Wu Y, Wu C, Cheng Y. Investigation into the antibacterial mechanism of biogenic tellurium nanoparticles and precursor tellurite. Int J Mol Sci. 2022; 23(19): 11697.
36.    Nassar ARA, Eid AM, Atta HM, El Naghy WS, Fouda A. Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii. Sci Rep. 2023; 13(1): 9054.
37.    Hashem AH, Khalil AMA, Reyad AM, Salem SS. Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biol Trace Elem Res. 2021; 199(10): 3998-4008.
38.    Lin WF, Hu RY, Chang HY, Lin FY, Kuo CH, Su LH, Peng HL. The role of urease in the acid stress response and fimbriae expression in Klebsiella pneumoniae CG43. J Microbiol Immunol Infect. 2022; 55(4): 620-633.
39.    Toplis B, Bosch C, Schwartz IS, Kenyon C, Boekhout T, Perfect JR, Botha A. The virulence factor urease and its unexplored role in the metabolism of Cryptococcus neoformans. FEMS Yeast Res. 2020; 20(4): foaa031.
40.    Ahmad K, Asif HM, Afzal T, Khan MA, Younus M, Khurshid U, Safdar M, Saifulah S, Ahmad B, Sufyan A, Ansari SA, Alkahtani HM, Ansari IA. Green synthesis and characterization of silver nanoparticles through the Piper cubeba ethanolic extract and their enzyme inhibitory activities. Front Chem. 2023; 11: 1065986.
41.    Alhumaydhi FA. Green synthesis of gold nanoparticles using extract of Pistacia chinensis and their in vitro and in vivo biological activities. J Nanomater. 2022; 2022: 5544475.
42.    Farooq A, Khan UA, Ali H, Sathish M, Naqvi SA, Iqbal H, Ali H, Mubeen I, Amir MB, Mosa WFA, Baazeem A, Moustafa M, Alrumman S, Shati A, Negm S. Green chemistry based synthesis of zinc oxide nanoparticles using plant derivatives of Calotropis gigantea (giant milkweed) and its biological applications against various bacterial and fungal pathogens. Microorganisms. 2022; 10(11): 2195.