Synthesis of nano-liposomes containing Mentha piperita essential oil and investigating their stability, antimicrobial, antioxidant, and antiproliferative properties

Document Type : Research Paper

Authors

1 Nano-Biotech Foresight Company Biotechnology Campus, Science & Technology Park of Yazd, Yazd, Iran

2 Department of Chemistry, Yasouj University, Yasouj, Iran

3 Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada

4 Department of Biology, Faculty of Science, University of Kufa, Iraq

5 5Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

6 Biotechnology Research Center, International Campus, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

7 Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

8 Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnūrd, Iran

9 Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnūrd, Iran

10.22038/nmj.2024.79435.1960

Abstract

Objective(s): Considering the problems of using medicinal plants in the treatment of diseases and the role of nanotechnology in reducing these challenges, the present research was conducted with the aim of preparing nano-liposomes containing Mentha piperita essential oil and investigating their physicochemical characteristics. 
Materials and Methods: Four nano-liposome formulations containing essential oil were prepared using cholesterol and phosphatidylcholine by thin layer method. Encapsulation efficiency, size, zeta potential, and essential oil release were measured in all formulations. The appropriate formulation was selected to investigate the morphology of the particles, their interaction between nano-liposomes and essential oil, toxicity, and antioxidant, antibacterial, and antifungal properties. Then, the stability of the selected formulation was checked for 120 days. 
Results: Formulation F1 was selected with an encapsulation efficiency of 62.12%, nano-particle size of 121 nm, and zeta potential of -21.8 mV. In this formulation, no interaction between nano-liposomes and essential oil was observed, and the spherical shape and two-layer nature of the nanoparticles were confirmed. Nano-liposomes with and without essential oil caused little toxicity to normal HFF cells and in all concentrations compared to free essential oil, they had more toxicity on MCF-7 cancer cells and higher antioxidant properties. The anti-proliferative effects of nano-liposomes on some microorganisms were higher than the free essential oil. Also,  there were slight changes in some physicochemical properties of nanoparticles during 120 days. 
Conclusion: Considering the suitable physicochemical properties of nano-liposomes containing essential oil and their anti-proliferative effects, these nano-systems can be suggested for further research in the field of cancer and microbial diseases.

Keywords


1.    Sasani E, Shahi Malmir H, Daneshmand F, Majdizadeh M, Haghiralsadat BF. Synthesis and physiochemical characterizing of Liponiosomal hybrid nano-carriers as carriers for Doxorubicin HCl anti-cancer drug. J Sabzevar Uni Med Sci. 2020;27(1):35-47.
2.    Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, Ca Cancer J Clin. 2023;73(1):17-48.
3.    Sadeghi M, Kashanian S, Naghib SM, Askari E, Haghiralsadat F, Tofighi D. A highly sensitive nanobiosensor based on aptamer-conjugated graphene-decorated rhodium nanoparticles for detection of HER2-positive circulating tumor cells. Nano Revi. 2022;11(1):793-810.
4.    Omidi M, Malakoutian M, Choolaei M, Oroojalian F, Haghiralsadat F, Yazdian F. A Label-Free detection of biomolecules using micromechanical biosensors. Chin Phys Lett. 2013;30(6):068701.
5.    Seyyednia E, Oroojalian F, Baradaran B, Mojarrad JS, Mokhtarzadeh A, Valizadeh H. Nanoparticles modified with vasculature-homing peptides for targeted cancer therapy and angiogenesis imaging. J Control Release. 2021;338:367-393.
6.    Beygi M, Oroojalian F, Hosseini SS, Mokhtarzadeh A, Kesharwani P, Sahebkar A. Recent progress in functionalized and targeted polymersomes and chimeric polymeric nanotheranostic platforms for cancer therapy. Prog  Mater Sci. 2023:101209.
7.    Beygi M, Oroojalian F, Azizi‐Arani S, Hosseini SS, Mokhtarzadeh A, Kesharwani P, et al. Multifunctional nanotheranostics for overcoming the blood–brain barrier. Adv Funct Mater. 2024:2310881.
8.    Oroojalian F, Karimzadeh S, Javanbakht S, Hejazi M, Baradaran B, Webster TJ, et al. Current trends in stimuli-responsive nanotheranostics based on metal–organic frameworks for cancer therapy. Mater Today. 2022;57:192-224.
9.    Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast cancer statistics, 2022. CA Cancer J Clin. 2022;72(6):524-541.
10.    Azizi M, Tavana M, Farsi M, Oroojalian F. Yield performance of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst.(higher Basidiomycetes), using different waste materials as substrates. Int J Med Mushrooms. International Journal of Medicinal Mushrooms 14(5):521-527.
11.    Chhikara BS, Parang K. Global Cancer Statistics 2022: the trends projection analysis. Chem Biol Lett. 2023;10(1):451.
12.    Taebpour M, Akhlaghi M, Shahriary S, Hajihosseini S, Haghiralsadat F, Oroojalian F, et al. Synthesis, physicochemical characterization and pharmaceutical function of niosomal nanoparticles-encapsulated bioactive compound for osteosarcoma treatment. Nanomed J. 2022;9(3): 205-15.
13.    Bernela M, Seth M, Kaur N, Sharma S, Pati PK. Harnessing the potential of nanobiotechnology in medicinal plants. Industrial Crops and Products. 2023;194:116266.
14.    Azizi M, Chizzola R, Ghani A, Oroojalian F. Composition at different development stages of the essential oil of four Achillea species grown in Iran. Nat Prod Commun. 2010;5(2):1934578X1000500224.
15.    Tabasi H, Oroojalian F, Darroudi M. Green clay ceramics as potential nanovehicles for drug delivery applications. Ceram Int. 2021;47(22):31042-31053.
16.    Karimi MA, Dadmehr M, Hosseini M, Korouzhdehi B, Oroojalian F. Sensitive detection of methylated DNA and methyltransferase activity based on the lighting up of FAM-labeled DNA quenched fluorescence by gold nanoparticles. RSC Adv. 2019;9(21):12063-12069.
17.    Mahendran G, Rahman LU. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha× piperita L.)—A review. Phytother Res. 2020;34(9):2088-2139.
18.    Eftekhari A, Khusro A, Ahmadian E, Dizaj SM, Hasanzadeh A, Cucchiarini M. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review. Arab J Chem. 2021;14(5):103106.
19.    Chakraborty K, Chakravarti AR, Bhattacharjee S. Bioactive components of peppermint (Mentha piperita L.), their pharmacological and ameliorative potential and ethnomedicinal benefits: A review. J Pharmacogn Phytochem. 2022;11(1):109-114.
20.    Saeidi S, Mohsenbeygi M, Roustakhiz J, Javadian F, Hassanshahian M. Antimicrobial and anti-biofilm effects of Mentha piperita and Zataria multiflora on pathogenic bacteria. J Med Bacteriol. 2019;8(1-2):37-44.
21.    Saravanan R, Natesan R, Samiappan SC, Ramalingam S. Anti-oxidant, anti-bacterial and anti-cancer activity of mentha piperita against Mcf-7 cells. Biomed Pharmacol J. 2021;14(3):1685-1694.
22.    Raeisi M, Bidkorpeh FG, Hashemi M, Tepe B, Moghaddam Z, Mohammadi MA, et al. Chemical Composition and Antibacterial and Antioxidant Properties of Essential Oils of Zataria multiflora, Artemisia deracunculus and Mentha piperita. Med Lab J. 2019;13(2):1-7.
23.    Haghiralsadat F, Azhdari M, Kalantar SM, Naderinezhad S, Teymourizadeh K, Yazdani M, et al. Strategy of improvements in the rapeutic index of medicinal herbs of Iranianin digenous: Synthesis and characterization of phospholipid lipid-based vesicles in corporated Trachyspermum copticum. SSU J. 2016;24(6):468-478.
24.    Akhlaghi M, Ebrahimpour M, Ansari K, Parnian F, Zarezadeh Mehrizi M, Taebpour M. Synthesis, study and characterization of nano niosomal system containing Glycrrizha glabra extract in order to improve its therapeutic effects. New Cell Mol Biotech J. 2021;11(42):65-82.
25.    Deng Y, Zhang X, Shen H, He Q, Wu Z, Liao W, et al. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol. 2020;7:489.
26.    Hemati M, Haghiralsadat F, Jafary F, Moosavizadeh S, Moradi A. Targeting cell cycle protein in gastric cancer with CDC20siRNA and anticancer drugs (doxorubicin and quercetin) co-loaded cationic PEGylated nanoniosomes. Int J Nanomed. 2019:6575-6585.
27.    Mohseni M, Dehghani Ashkezari M, Akhlaghi M, Ansari K, Haghirosadat BF. A new therapeutic approach for the treatment of breast cancer using synthesis of liposomes containing silybinin and their characterization. New Cell Mol Biotech J. 2021;11(44):57-70.
28.    Maja L, Željko K, Mateja P. Sustainable technologies for liposome preparation. J Supercrit Fluids. 2020;165:104984.
29.    Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliv Rev. 2020;156:4-22.
30.    Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J, et al. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int J Polym Mater Polym Biomater. 2018;67(6):383-400.
31.    Majdizadeh M, Rezaei Zarchi S, Movahedpour AA, Shahi Malmir H, Sasani E, Haghiralsadat BF. A new strategy in improving therapeutic indexes of medicinal herbs: preparation and characterization of nano-liposomes containing Mentha piperita essential oil. SSU J. 2018;25(11):853-864.
32.    Taghizadeh SF, Azizi M, Rezaee R, Giesy JP, Karimi G. Polycyclic aromatic hydrocarbons, pesticides, and metals in olive: analysis and probabilistic risk assessment. Environ Sci Pollut Res. 2021;28:39723-39741.
33.    Parchami M, Haghiralsadat F, Sadeghian-Nodoushan F, Hemati M, Shahmohammadi S, Ghasemi N, et al. A new approach to the development and assessment of doxorubicin-loaded nanoliposomes for the treatment of osteosarcoma in 2D and 3D cell culture systems. Heliyon. 2023;9(5): e15495.
34.    Afereydoon S, Haghiralsadat F, Hamzian N, Shams A, Hemati M, Naghib SM, et al. Multifunctional PEGylated niosomal nanoparticle-loaded herbal drugs as a novel nano-radiosensitizer and stimuli-sensitive nanocarrier for synergistic cancer therapy. Front Bioeng Biotechnol. 2022;10:917368.
35.    Malekpour-Dehkordi Z, Mohiti-Ardakani J, Nourbakhsh M, Teimourian S, Naghiaee Y, Hemati M, et al. Gene expression profile evaluation of integrins in 3T3-L1 cells differentiated to adipocyte, insulin resistant and hypertrophied cells. Gene. 2019;710:406-414.
36.    Nia AH, Behnam B, Taghavi S, Oroojalian F, Eshghi H, Shier WT, et al. Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube–succinate–polyethylenimine conjugates as non-viral gene carriers. Med Chem Comm. 2017;8(2):364-375.
37.    Gholami Z, Dadmehr M, Jelodar NB, Hosseini M, Parizi AP. One-pot biosynthesis of CdS quantum dots through in vitro regeneration of hairy roots of Rhaphanus sativus L. and their apoptosis effect on MCF-7 and AGS cancerous human cell lines. Mater Res Express. 2020;7(1):015056.
38.    Akhlaghi M, Taebpour M, Sharafaldini M, Javani O, Haghiralsadat BF, Oroojalian F, et al. Fabrication, characterization and evaluation of anti-cancer and antibacterial properties of nanosystems containing Hedera Helix aqueous extracts. Nanomed J. 2022;9(1):43-56.
39.    Ebrahimpour M, Akhlaghi M, Hemati M, Ghazanfary S, Shahriary S, Ghalekohneh SJ, et al. In vitro evaluation and comparison of anticancer, antimicrobial, and antifungal properties of thyme niosomes containing essential oil. Nanomed J. 2022;9(4): 307-318.
40.    Rahimizadeh M, Eshghi H, Shiri A, Ghadamyari Z, Matin MM, Oroojalian F, et al. Fe (HSO 4) 3 as an efficient catalyst for diazotization and diazo coupling reactions. J Korean Chem Soc. 2012;56(6):716-719.
41.    Pandey MK, Von Suskil M, Chitren R, Al-Odat O, Jonnalagadda SC, Aggarwal BB. Cancer on fire: role of inflammation in prevention and treatment. Current advances for development of functional foods modulating inflammation and oxidative stress: Academic Press.; 2022. p. 605-626.
42.    Allenspach M, Steuer C. α-Pinene: A never-ending story. Phytochemistry. 2021;190:112857.
43.    Park BB, An JY, Park SU. Recent studies on pinene and its biological and pharmacological activities. EXCLI J. 2021;20:812-818.
44.    Anandakumar P, Kamaraj S, Vanitha MK. D‐limonene: A multifunctional compound with potent therapeutic effects. J Food Biochem. 2021;45(1):e13566.
45.    Mandal D, Parija T. Anticancer Mechanism of D-limonene: An Updated Review and Therapeutic Possibilities. Curr Cancer Ther Rev. 2022;18(3):193-201.
46.    Ye Z, Liang Z, Mi Q, Guo Y. Limonene terpenoid obstructs human bladder cancer cell (T24 cell line) growth by inducing cellular apoptosis, caspase activation, G2/M phase cell cycle arrest and stops cancer metastasis. J Buon. 2020;25:280-285.
47.    Farhanghi A, Aliakbarlu J, Tajik H, Mortazavi N, Manafi L, Jalilzadeh‐Amin G. Antibacterial interactions of pulegone and 1, 8‐cineole with monolaurin ornisin against Staphylococcus aureus. Food Sci Nutr. 2022;10(8):2659-2666.
48.    Lts P, Serafini M, Oliveira M, Sampaio L, Guimarães J, Guimarães A. Carvone and its pharmacological activities: A systematic review. Phytochem. 2022;196:113080.
49.    Patel PB, Thakkar VR. L-carvone induces p53, caspase 3 mediated apoptosis and inhibits the migration of breast cancer cell lines. Nutr Cancer. 2014;66(3):453-462.
50.    Bouyahya A, Mechchate H, Benali T, Ghchime R, Charfi S, Balahbib A, et al. Health benefits and pharmacological properties of carvone. Biomol. 2021;11(12):1803.
51.    Zaia MG, Cagnazzo TdO, Feitosa KA, Soares EG, Faccioli LH, Allegretti SM, et al. Anti-inflammatory properties of menthol and menthone in Schistosoma mansoni infection. Front Pharmacol. 2016;7:170.
52.    Bondar OV, Saifullina D, Shakhmaeva I, Mavlyutova I, Abdullin T. Monitoring of the zeta potential of human cells upon reduction in their viability and interaction with polymers. Acta Naturae. 2012;4(1 (12):78-81.
53.    Németh Z, Csóka I, Semnani Jazani R, Sipos B, Haspel H, Kozma G, et al. Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics. 2022;14(9):1798.
54.    Zhao W, Zhuang S, Qi X-R. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int J Nanomed. 2011:3087-3098.
55.    Das P, Das MK. Production and physicochemical characterization of nanocosmeceuticals.  Nanocosmeceuticals: Elsevier; 2022. p. 95-138.
56.    Akbari P, Taebpour M, Akhlaghi M, Hasan SH, Shahriyari S, Parsaeian M, et al. Regulation of the P53 tumor suppressor gene and the Mcl-2 oncogene expression by an active herbal component delivered through a smart thermo-pH-sensitive PLGA carrier to improve Osteosarcoma treatment. Medical Oncology. 2024;41(3):68.
57.    Najlah M, Said Suliman A, Tolaymat I, Kurusamy S, Kannappan V, Elhissi AM, et al. Development of injectable PEGylated liposome encapsulating disulfiram for colorectal cancer treatment. Pharmaceutics. 2019;11(11):610.
58.    Andra VVSNL, Pammi S, Bhatraju LVKP, Ruddaraju LK. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience. 2022;12(1):274-291.
59.    Mirzaei F, Majdizadeh M, Fatahi-Bafghi A, Haghiralsadat bf. Fabrication and characterization of liposomal nanocarriers containing essential oils of Trachyspermum ammi to counteract Trichomonas vaginalis. Koomesh. 2021;23:282-290.
60.    Akhlaghi M, Eftekharivash L, Taebpour M, Afereydoon S, Ebrahimpour M, Zarezadeh Mehrizi M, et al. Improving the therapeutic performance of glycyrrhiza glabra hydroalcoholic extract using liposomal nano-carriers and their characterization. Dis Diagn. 2022;11(2):39-48.
61.    Abdelbary G, El-Gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS Pharmscitech. 2008;9:740-747.
62.    Kulkarni S, Betageri G, Singh M. Factors affecting microencapsulation of drugs in liposomes. J Microencapsul. 1995;12(3):229-246.
63.    Deniz A, Sade A, Severcan F, Keskin D, Tezcaner A, Banerjee S. Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep. 2010;30(5):365-373.
64.    Naderinezhad S, Amoabediny G, Haghiralsadat F. Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers. RSC Adv. 2017;7(48):30008-30019.
65.    Siyadatpanah A, Norouzi R, Mirzaei F, Haghirosadat BF, Nissapatorn V, Mitsuwan W, et al. Green synthesis of nano-liposomes containing Bunium persicum and Trachyspermum ammi essential oils against Trichomonas vaginalis. J Microbiol Immunol Infect. 2023;56(1):150-162.
66.    Dutra QP, Christ JA, Carrijo TT, de Assis Alves T, de Assis Alves T, Mendes LA, et al. Phytocytotoxicity of volatile constituents of essential oils from Sparattanthelium Mart. species (Hernandiaceae). Sci Rep. 2020;10(1):12213.