Fabrication of a fast response non-enzymatic glucose sensor based on in-situ synthesized Cu-metal organic frameworks integrated with electrochemically reduced graphene quantum dots

Document Type : Research Paper

Authors

Electrochemistry Research Laboratory, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

10.22038/nmj.2024.75527.1833

Abstract

Objective(s): During this study, a novel and fast response platform based on in-situ synthesis of Cu-metal organic frameworks (Cu-MOFs) integrated with electrochemically reduced graphene quantum dots (ErGQDs) was developed through an electrochemical deposition method and a conversation process for non-enzymatic glucose determination.
Materials and Methods: In the first step, metallic copper and ErGQDs were simultaneous electrochemically deposited on the surface of carbon ceramic electrode (CCE). Then, metallic copper was converted to copper oxide by cyclic voltammetry technique. Finally, by adding the benzene-1, 3, 5-tricarboxylic acid (BTC), copper-based MOFs was formed on the surface of constructed electrode by an in-situ conversation process and the fabricated electrode (Cu-MOFs/ErGQDs/CCE) was used for the non-enzymatic electrochemical detection of glucose. The physicochemical characterization and electrocatalytic behavior of fabricated electrode toward glucose oxidation were studied through the suitable techniques.  
Results: The electrochemical results demonstrated that the Cu-MOFs/ErGQDs/CCE is a suitable sensor for glucose determination which exhibits wide linear ranges (2.0-500.0 µM), low detection limit [0.59 µM (S/N=3)], high sensitivity (5069 μA mM-1cm-2), stability (RSD%=3.02), reproducibility  (RSD%= 2.09) and good selectivity. 
Conclusion: Overall, this study highlights the development of Cu-MOFs/ErGQDs/CCE as a sensor with promising characteristics for non-enzymatic determination of glucose. So that, the present sensor was used for detection of glucose in human blood serum and saliva samples.

Keywords


1. Hu Z, Zhao D. Metal-organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm. 2017; 19(29): 4066-4081. 
2.    Kempahanumakkagari S,  Kumar V,  Samaddar P,  Kumar P,  Ramakrishnappa T,  Kim KH. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform.  Biotechnol. Adv. 2018; 36(2): 467-481.
3.    Xu Y, Li Q,  Xue H,  Pang H. Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018; 376: 292-318.
4.    Yoo Y, Jeong HK. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition.  ChemComm.  2008; 36(21): 241-244.
5.    Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Xamena FXLi, Gascon J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015; 14: 48-55.
6.    Falcaro P, Hill AJ, Nairn KM, Jasieniak J, Mardel JI, TJ Bastow, Mayo SC, Gimona M, Gomez D, Whitfield HJ, Riccò R, Patelli A, Marmiroli B, Amenitsch H, Colson T, Villanova L, Buso D. A new method to position and functionalize metal-organic framework crystals. Nat. Commun. 2011; 2 (237): 237-234.
7.    Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H. Surface nano-architecture of a metal-organic framework. Nat. Mater. 2010; 9(7): 565-571.
8.    Li M, Dincă M. Reductive Electrosynthesis of Crystalline Metal-Organic Frameworks.  J. Am. Chem. Soc. 2011; 133(33): 12926-12929. 
9.    Habibi B, Pashazadeh A, Pashazadeh S, Saghatforoush LA. Copper/zeolitic imidazolate framework-8 integrated by boron nitride as an electrocatalyst at the glassy carbon electrode to sensing of the clopidogrel. J. Solid State Chem. 2023; 323: 123982.
10.    Qi Y, Lin S, Chen C, Liu Y, Qiao Z, Kuang X, Suiang Q, chao HY. Increased proton conductivity of metal-organic framework micro-film prepared by a facile salt-free approach. J. Mater. Chem. A. 2014; 2 (23): 8849-8853. 
11.    Guo H, Zhu G, Hewitt IJ, Qiu S. “Twin Copper Source” Growth of Metal-Organic Framework Membrane: Cu3 (BTC) 2 with High Permeability and Selectivity for Recycling H2. J. Am. Chem. Soc. 2009; 131 (5): 1646-1647.
12.    Chen YC, Chiang WH, Kurniawan D, Yeh PC, Otake KI, Kung CW. Impregnation of Graphene Quantum Dots into a Metal−Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing.  ACS Appl. Mater. Interfaces. 2019; 11(38): 35319-35326.
13.    Habibi B, Pashazadeh A, Pashazadeh S, Saghatforoush LA. Electrocatalytic oxidation and determination of hydrazine in alkaline medium through in situ conversion thin film nanostructured modified carbon ceramic electrode. J. Electroanal. Chem.  2022; 907 (2): 116038.
14.    Rahmani K, Habibi B. Electrofabrication of the Ternary NiCuFe Alloy Nanoparticles/ERGO Nanocomposite: Effective Electrooxidation of the Glucose and Glycerol in Alkaline Media. Chemistryselect. 2020; 5 (26): 7990-8001.
15.    Altegani S, Naser E, Badmus KO, Khotseng L. Synthesis, Properties, and Applications of Metal Organic Frameworks Supported on Graphene Oxide. Coat. 2023; 13 (8): 1456.
16.    Habibi B, Pashazadeh S. Fabrication, characterization and performance evaluation of an amplified electrochemical sensor based on MOFs nanocomposite for leukemia drug Imatinib determination. Sens. Bio-Sens. Res. 2023; 42: 100604.
17.    Habibi B, Pashazadeh S, Pashazadeh A, Saghatforoush, LA. An amplified electrochemical sensor employing one-step synthesized nickel-copper-zinc ferrite/carboxymethyl cellulose/graphene oxide nanosheets composite for sensitive analysis of omeprazole. RSC Adv. 2023; 13 (43): 29931-29943.
18.    Habibi B, Pashazadeh A, Saghatforoush LA. Zn-mesoporous metal-organic framework incorporated with copper ions modified glassy carbon electrode: Electrocatalytic oxidation and determination of amoxicillin. Microchem. J. 2021; 164:106011. 
19.    Wei D, Tang W, Gan Y, Xu X. Graphene quantum dot-sensitized Zn-MOFs for efficient visible-light-driven carbon dioxide reduction. Catal. Sci. Technol. 2020; 10(16): 5666-5676.
20.    Bacon M, Bradley SJ, Nann T. Graphene Quantum Dots. Part Part Syst Charact. 2014; 31 (4): 415-428.
21.    Sheikh Mohd Ghazali SAI, Is F, Zamil ZN, Zulkifli NN, Adam N. “Graphene quantum dots: A comprehensive overview. Chemistry Open. 2023; 21 (1):0285.
22.    Li M, Liu C, Qi L, Liu H. Nitrogen-Doped Graphene Quantum Dots Anchored on Hollow Zeolitic Imidazolate Framework8 Colloidosomes for Fluorescence Detection of Glucose. “ACS Appl. Nano Mater.” 2022; 5 (4): 5425-5438.
23.    Ahirwar S, Mallick S, Bahadur D. Electrochemical Method To Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots. ACS Omega.  2017; 2 (11): 8343-8353.
24.    Kaur A, Kaur A, Pandey K,  Kaur R, Vashishat N , Kaur M. Nanocomposites of Carbon Quantum Dots and Graphene Quantum Dots: Environmental Applications as Sensors. Chemosensors 2022; 10 (9): 367.
25.    Chen YC, Chiang WH, Kurniawan D, Yeh PC, Otake KI, Kung CW. Impregnation of Graphene Quantum Dots into a Metal-Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Appl. Mater. Interfaces. 2019; 11 (38): 35319-35326.
26.    Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. PT. 2008; 88(11): 1254-1264.
27.    Steiner MS, Duerkop A, Wolfbeis OS. Optical methods for sensing glucose. Chem. Soc. Rev. 2011; 40 (9): 4805-4839.
28.    Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S. Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 2013; 3 (14): 4473-4491.
29.    Li J, Hu H, Li H, Yao C.  Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2. J. Mater. Sci. 2017; 52 (17): 10455-10469.
30.    Hassan MH, Vyas C, Grieve B, Bartolo P. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sens. 2021; 21(14): 4672.
31.    Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang. Non-enzymatic electrochemical sensing of glucose. Microchim. Acta. 2013; 180: 161-186. 
32.    Wei M, Qiao Y, Zhao H, Liang J, Li T, Luo Y, Lu S, Shi X, Lu W, Sun X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem comm. 2020; 56 (93): 14553-14569.
33.    Habibi B, Haghighi SY. Electrosynthesized Reduced Graphene Oxide-Supported Platinum, Platinum-Copper and Platinum-Nickel Nanoparticles on Carbon-Ceramic Electrode for Electrocatalytic Oxidation of Ethanol in Acidic Media. IJCCE. 2019; 38 (3): 167-181.
34.    Dong Y,  Shao J,  Chen C,  Li H,  Wang R,  Chi Y,  Lin X,  Chen G. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012; 50 (12): 4738-4743.
35.    Alizadeh T, shokri M. A new humidity sensor based upon graphene quantum dots prepared via carbonization of citric acid. Sens. Actuators B Chem. 2016; 222: 728-734.
36.    Mohammad Rezaei R, Abbas Zadeh J, Golmohammadpour M, Hosseinzadeh E. Simultaneous electrodeposition of reduced graphene quantum dots/copper oxide nanocomposite on the surface of carbon ceramic electrode for the electroanalysis of Adenine and Guanine. Electroanalysis. 2021; 33 (12): 2428-2436.
37.    Zeng Y, Camarada ME, Lu X, Tang K, Li W, Qiu D, Wen Y, Wu G, Luo Q, Bai L. Detection and electrocatalytic mechanism of zearalenone using nanohybrid sensor based on copper-based metal-organic framework/magnetic Fe3O4-graphene oxide modified electrode. Food Chem. 2022; 370: 131024.
38.    Caddeo F, Vogt R, Weil D, Sigle W, Toimil Molares ME, Maijenburg AW. Tuning the Size and Shape of Nano MOFs via Templated Electrodeposition and Subsequent Electrochemical Oxidation. ACS Appl. Mater. Interfaces.  2019; 11 (28): 25378-25387.
39.    Giri SD, Sarkar A. Electrochemical Study of Bulk and Monolayer Copper in Alkaline Solution. J. Electrochem. Soc. 2016; 163 (3): 52-59.
40.    Habibi B, Delnavaz N. Electrooxidation of glycerol on nickel and nickel alloy (Ni–Cu and Ni–Co) nanoparticles in alkaline media. RSC Adv. 2016; 6(38): 31797-31806.
41.    Muthurasu A, Dhandapani P, Ganesh V. Facile and simultaneous synthesis of graphene quantum dots and reduced graphene oxide for bio-imaging and supercapacitor applications. New J Chem. 2016; 40(11): 9111-9124.
42.    Liu S, Sun L, Xu F, Zhang J, Jiao C, Li F, Li Z, Wang S, Wang Z, Jiang X, Zhou H, Yang l, Schick C. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ Sci. 2013; 6(3): 818-823.
43.    Lee DY, Shinde DV, Yoon SJ, Cho KN, Lee W, Shrestha NK, Han SH. Cu-based metal–organic frameworks for photovoltaic application. J Phys Chem C. 2014; 118(30): 16328-16334.
44.    Gascon J, Aguado S, Kapteijn F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater. 2008; 113(1-3): 132-138.
45.    Moradi Golsheikh A, Yeap GY, Yam FK, San Lim H. Facile fabrication and enhanced properties of copper-based metal organic framework incorporated with graphene for non-enzymatic detection of hydrogen peroxide. Synth Met. 2020; 260: 116272.
46.    Chen S,  Wang C,  Zhang M,  Zhang W,  Qi J,  Sun X,  Wang L,  Li J. N-doped Cu-MOFs for efficient electrochemical determination of dopamine and sulfanilamide. J Hazard. Mater. 2020; 390: 122157.
47.    Arul P, John SA. Electrodeposition of CuO from Cu-MOF on glassy carbon electrode: A non-enzymatic sensor for glucose. J Electroanal Chem. 2017; 799: 61-69.
48.     Lukaszewski M, Soszko M, Czerwiński A. Electrochemical methods of real surface area determination of noble metal electrodes–an overview. Int J Electrochem. Sci, 2016; 11(6): 4442-4469.
49.    Habibi B, Pashazadeh S, Saghatforoush LA, Pashazadeh A. Direct electrochemical synthesis of the copper based metal-organic framework on/in the heteroatoms doped graphene/pencil graphite electrode: Highly sensitive and selective electrochemical sensor for sertraline hydrochloride. J Electroanal Chem.  2021; 888: 115210.
50.    Iftikhar T, Xu Y, Aziz A, Ashraf G, Li G, Asif M, Xiao F, Liu H. Tuning Electrocatalytic Aptitude by Incorporating α-MnO2 Nanorods in Cu-MOF/rGO/CuO Hybrids: Electrochemical Sensing of Resorcinol for Practical Applications. ACS Appl Mater.Interfaces. 2021; 13 (27): 31462-31473.
51.    Wanga F, Chen X, Chen L, Yang J, Wang Q. High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel (II)-based MOF/carbon nanotubes composite. Mater Sci Eng C. 2019; 96: 41-50.
52.    Handa Y, Watanabe K, Chihara K, Katsuno E, Horiba T, Inoue M, Komaba S. The Mechanism of Electro-Catalytic Oxidation of Glucose on Manganese Dioxide Electrode Used for Amperometric Glucose Detection. J Electrochem Soc. 2018; 165 (11): 742-749.
53.    Zhang Y, Xu J, Xia J, Zhang F, Wang Z. MOF-Derived Porous Ni2P/Graphene Composites with Enhanced Electrochemical Properties for Sensitive Nonenzymatic Glucose Sensing. ACS Appl Mater Interfaces. 2018; 10 (45): 39151-39160.
54.    Salimi A, Roushani M. Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol-gel dispersed renewable carbon ceramic electrode. Electrochem Commun. 2005; 7 (9): 879-887.
55.    Liu B, Wang X, Liu H, Zhai Y, Li L, Wen H. 2D MOF with electrochemical exfoliated graphene for nonenzymatic glucose sensing: Central metal sites and oxidation potentials. Anal Chim Acta. 2020; 1122: 9-19.
56.    Chen X, Liu D, Cao G, Tang Y, Wu C. In Situ Synthesis of a Sandwich-like Graphene@ZIF-67 Heterostructure for Highly Sensitive Nonenzymatic Glucose Sensing in Human Serums. ACS Appl Mater Interfaces. 2019; 11 (9): 9374-9384.
57.    Wu L, Lu Z, Ye J. Enzyme-free glucose sensor based on layer-by-layer electrodeposition of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode. Biosens Bioelectron. 2019; 135: 45-49.
58.    Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed. Ed. or Eds. Wiley; 2001.
59.    Khosroshahi Z, Karimzadeh F, Kharazia M, Allafchian A. A non-enzymatic sensor based on three-dimensional graphene foam decorated with Cu-xCu2O nanoparticles for electrochemical detection of glucose and its application in human serum. Mater Sci Eng C. 2020; 108: 110216.
60.    Wei C, Li X, Xiang W, Yu Z, Liu Q. MOF derived seaweed-like CoCu oxides nanorod arrays for electrochemical non-enzymatic glucose sensing with ultrahigh sensitivity. Sens.Actuators: B. Chem. 2020; 324: 128773. 
61.    Xu Z, Jia L, Zhu RR, Du L, Zhao QH. High-performance non-enzymatic glucose electrochemical sensor constructed by transition nickel modified Ni@Cu-MOF. J Electroanal Chem. 2020; 858: 113783.
62.    Zhang J, Chen L, Yang K. In situ synthesis of CuO nanoparticles decorated hierarchical Ce-metal-organic framework nanocomposite for an ultrasensitive non-enzymatic glucose sensor. Ionics. 2019; 25 (26): 4447-4457.
63.    Wei C, Li X, Xiang W, Yu Z, Liu Q. MOF derived seaweed-like CoCu oxides nanorod arrays for electrochemical non-enzymatic glucose sensing with ultrahigh sensitivity. Sens. Actuators B Chem. 2020;324:128773.
64.    Nie H, Yao Z, Zhou X, Yang Z, Huang S. Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosens Bioelectron. 2011; 30(1):28-34. 
65.    Su Y, Guo H, Wang Z, Long Y, Li W, Tu Y. Au@ Cu2O core-shell structure for high sensitive non-enzymatic glucose sensor. Sens. Actuators B Chem.  2018; 255: 2510-2519. 
66.    Wang L, Yang Y, Wang B, Duan C, Li J, Zheng L, Li J, Yin Z. Bifunctional three-dimensional self-supporting multistage structure CC@ MOF-74 (NiO)@ NiCo LDH electrode for supercapacitors and non-enzymatic glucose sensors. J Alloys Compd. 2021; 885:160899. 
67.    Liu Y, Tu D, Zheng W, Lu L. You W, Zhou S, Huang P, Li R, Chen X. A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Res. 2018; 11(6): 3164-3174.
68.    Fang L, Zhu Q, Cai Y, Liang B, Ye X. 3D porous structured polyaniline/reduced graphene oxide/copper oxide decorated electrode for high performance nonenzymatic glucose detection. J Electroanal Chem. 2019; 841:1-9.
69.    Shahrokhian S, Ezzati M, Hosseini H. Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. Talanta. 2020; 210:120696.
70.    Zhang L, Wang N, Cao P, Lin M, Xu L, Ma, H. Electrochemical non-enzymatic glucose sensor using ionic liquid incorporated cobalt-based metal-organic framework. Microchem J. 2020;159:105343.
71.    Sun S, Tang Y, Wu C, Wan C. Phytic acid functionalized ZIF-67 decorated graphene nanosheets with remarkably boosted electrochemical sensing performance. Anal Chim. Acta 2020; 1107: 55-62.
72.    Chiu WT, Chang TFM, Sone M, Tixier-Mita A, Toshiyoshi H. Roles of TiO2 in the highly robust Au nanoparticles-TiO2 modified polyaniline electrode towards non-enzymatic sensing of glucose. Talanta 2020; 212:120780.
73.    Geng D, Bo X, Guo L. Ni-doped molybdenum disulfide nanoparticles anchored on reduced graphene oxide as novel electroactive material for a non-enzymatic glucose sensor. Sens. Actuators B Chem. 2017; 244:131-141.
74.    Hussein BA, Tsegaye AA, Shifera G, Taddesse AM. A sensitive non-enzymatic electrochemical glucose sensor based on a ZnO/Co3O4/reduced graphene oxide nanocomposite. Sens Diagn. 2023; 2(2): 347-360.