3-aminopropyltrimethoxysilane-modified magnetic quadruple nanocomplex induces apoptosis in MCF7 cell line

Document Type : Research Paper

Authors

1 Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran

2 Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran

3 Department of Microbiology, Ahar Branch, Islamic Azad University, Ahar, Iran

4 Department of Biochemistry, Medical College of Wisconsin. Milwaukee, USA

Abstract

Objective(s): Natural compounds, such as Oleuropein, Quercetin, Coumarin, and Valproic acid, play a vital role in preventing the spread and progression of cancer. Oleuropein increases the expression of certain caspases, Quercetin reduces the activity of the PI3K/Akt/IKK-/NF-κB pathway, Coumarin inhibits aromatase, and Valproic acid acts as an inhibitor of histone deacetylases. This study aimed to produce a quadruple magnetic nanocomplex with high bioavailability and to examine whether this nanocomplex can induce apoptosis in MCF7 breast cancer cell lines.
Materials and Methods: A silicon bridge (Sio-N-) was built using nanomagnetic iron and methoxysilane to create a magnetic nanocomplex that incorporated the four natural substances. This quadruple nanocomplex was then analyzed using various spectroscopic techniques and measurements. The researchers assessed the inhibitory impact of the nanocomplex on apoptotic genes in the MCF7 breast cancer cell line using the MTT assay, Hoechst staining, flow cytometry, and real-time PCR analysis.
Results: The magnetic nanocomplex exhibited a greater level of toxicity and reduced the number of cancer cells compared to any of the individual natural compounds or the quadruple combination without nanoparticles. The quadruple magnetic nanocomplex induced overexpression of the pro-apoptotic genes P53, Bim, and Bak, while reducing the expression of the anti-apoptotic gene Bcl2. Additionally, the nanocomplex treatment increased the expression level of genes involved in apoptosis by up to two-fold.
Conclusion: The combination of plant-derived natural compounds and magnetic nanoparticles can enhance the toxicity and concentration of the materials against breast cancer cells. This approach may provide synergistic effects through the modulation of various molecular pathways, leading to the inhibition of cancer cell proliferation and the induction of apoptosis.

Keywords


  1. Tzenios N, Tazanios ME, Chahine M. The impact of BMI on breast cancer - an updated systematic review and meta-analysis. Medicine (Baltimore). 2024;103(5):e36831.
  2. Seif F, Torki Z, Zalpoor H, Habibi M, Pornour M. Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics. 2023;28:132-157.
  3. Wawruszak A, Halasa M, Okon E, Kukula-Koch W, Stepulak A. Valproic Acid and Breast Cancer: State of the Art in 2021. Cancers (Basel). 2021;13(14):3409. Published 2021 Jul 7.
  4. Soheilifar MH, Vaseghi H, Seif F, et al. Concomitant overexpression of mir-182-5p and mir-182-3p raises the possibility of IL-17-producing Treg formation in breast cancer by targeting CD3d, ITK, FOXO1, and NFATs: A meta-analysis and experimental study. Cancer Sci. 2021;112(2):589-603.
  5. Mohammad RM, Muqbil I, Lowe L, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35 Suppl(0):S78-S103.
  6. Delgir S, Ilkhani K, Safi A, et al. The expression of miR-513c and miR-3163 was downregulated in tumor tissues compared with normal adjacent tissue of patients with breast cancer. BMC Med Genomics. 2021;14(1):180.
  7. Yuan L, Cai Y, Zhang L, Liu S, Li P, Li X. Promoting Apoptosis, a Promising Way to Treat Breast Cancer With Natural Products: A Comprehensive Review. Front Pharmacol. 2022;12:801662.
  8. Cháirez-Ramírez MH, de la Cruz-López KG, García-Carrancá A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front Pharmacol. 2021;12:710304.
  9. Briguglio G, Costa C, Pollicino M, Giambò F, Catania S and Fenga C: Polyphenols in cancer prevention: New insights (Review). Int J Funct Nutr. 2020; 1(2):1-.
  10. Bhat, A.A., Gupta, G., Afzal, M. et al. Polyphenol-Loaded Nano-carriers for Breast Cancer Therapy: A Comprehensive Review. BioNanoSci. 2024;14, 4219–4237.
  11. Hami Z, Salarian A A. Synthesis and loading of nanocurcumin on iron magnetic nanoparticles modified with chitosan. Tehran Univ Med J 2020; 77 (11) :715-719.
  12. Barzegar F, Zaefizadeh M, Yari R, Salehzadeh A. Synthesis of Nano-Paramagnetic Oleuropein to Induce KRAS Over-Expression: A New Mechanism to Inhibit AGS Cancer Cells. Medicina (Kaunas). 2019;55(7):388.
  13. Sabzini M, Moradi A, Sahrayi H, Shamsabadipour A, Namazifard S, Hojjati S, Mostafavi E. Functionalized magnetic nanoparticles for cancer therapy. InFunctionalized Nanomaterials for Cancer Research .Academic Press. 2024; 435-457.
  14. Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers (Basel). 2020;12(7):1959.
  15. Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275(5303):1129-1132.
  16. Bhattacharyya SS, Paul S, De A, et al. Poly (lactide-co-glycolide) acid nanoencapsulation of a synthetic coumarin: cytotoxicity and bio-distribution in mice, in cancer cell line and interaction with calf thymus DNA as target. Toxicol Appl Pharmacol. 2011;253(3):270-281.
  17. Rauf A, Imran M, Khan IA, et al. Anticancer potential of quercetin: A comprehensive review. Phytother Res. 2018;32(11):2109-2130.
  18. Shahbazi R, Davoodi H, Esmaeili S. The anticancer effects of flavonoids: involvment of PI3K/ Akt signaling pathway. Iranian J Nutr Sci Food Technol 2013; 7 (4).
  19. Zang X , Cheng M , Zhang X , Chen X . Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct. 2021;12(15):6664-6681.
  20. Sun J, Li M, Lin K, et al. Delivery of quercetin for breast cancer and targeting potentiation via hyaluronic nano-micelles. Int J Biol Macromol. 2023;242(Pt 2):124736.
  21. Iannelli F, Roca MS, Lombardi R, et al. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. J Exp Clin Cancer Res. 2020;39(1):213.
  22. Sanaei M, Kavoosi F. Effect of Valproic Acid on the Class I Histone Deacetylase 1, 2 and 3, Tumor Suppressor Genes p21WAF1/CIP1 and p53, and Intrinsic Mitochondrial Apoptotic Pathway, Pro- (Bax, Bak, and Bim) and anti- (Bcl-2, Bcl-xL, and Mcl-1) Apoptotic Genes Expression, Cell Viability, and Apoptosis Induction in Hepatocellular Carcinoma HepG2 Cell Line. Asian Pac J Cancer Prev. 2021;22(S1):89-95.
  23. Seif F, Ghalehbaghi B, Aazami H, et al. Frequency of CD4+ and CD8+ T cells in Iranian chronic rhinosinusitis patients. Allergy Asthma Clin Immunol. 2018;14:47.
  24. Chavele KM, Merry E, Ehrenstein MR. Cutting edge: circulating plasmablasts induce the differentiation of human T follicular helper cells via IL-6 production. J Immunol. 2015;194(6):2482-2485.
  25. Dutta RK, Sharma PK, Kobayashi H, Pandey AC. Functionalized biocompatible nanoparticles for site-specific imaging and therapeutics. Polym Sci (2012) 247: 233–276.
  26. Mancarella S, Greco V, Baldassarre F, Vergara D, Maffia M, Leporatti S. Polymer-Coated Magnetic Nanoparticles for Curcumin Delivery to Cancer Cells. Macromol Biosci. 2015;15(10):1365-1374.
  27. Zhou W, Feng X, Han Han, Guo S, Wang G. Synergistic effects of combined treatment with histone deacetylase inhibitor suberoylanilide hydroxamic acid and TRAIL on human breast cancer cells. Sci Rep. 2016;6:28004.
  28. Zhang R, Wu C, Wang X, Sun Q, Chen B, Li X, Gutmann S, Lv G. Enhancement effect of nano Fe3O4 to the drug accumulation of doxorubicin in cancer cells. Materials Science and Engineering: C. 2009;29(5):1697-1701.
  29. Wang MS, Chen L, Xiong YQ, Xu J, Wang JP, Meng ZL. Iron oxide magnetic nanoparticles combined with actein suppress non-small-cell lung cancer growth in a p53-dependent manner. Int J Nanomedicine. 2017 Oct 17;12:7627-7651.
  30. Di Pompo G, Salerno M, Rotili D, Valente S, Zwergel C, Avnet S, Lattanzi G, Baldini N, Mai A. Novel histone deacetylase inhibitors induce growth arrest, apoptosis, and differentiation in sarcoma cancer stem cells. J Med Chem. 2015 May 14;58(9):4073-9.
  31. Ahmad Farooqi A, Fayyaz S, Silva AS, Sureda A, Nabavi SF, Mocan A, Nabavi SM, Bishayee A. Oleuropein and Cancer Chemoprevention: The Link is Hot. Molecules. 2017;22(5):705.
  32. Liu L, Ahn KS, Shanmugam MK, Wang H, Shen H, Arfuso F, Chinnathambi A, Alharbi SA, Chang Y, Sethi G, Tang FR. Oleuropein induces apoptosis via abrogating NF-κB activation cascade in estrogen receptor-negative breast cancer cells. J Cell Biochem. 2019;120(3):4504-4513.
  33. Manca ML, Lai F, Pireddu R, Valenti D, Schlich M, Pini E, Ailuno G, Fadda AM, Sinico C. Impact of nanosizing on dermal delivery and antioxidant activity of quercetin nanocrystals. Int. J. Drug Deliv. Technol. 2020;55:101482.
  34. Utama K, Khamto N, Meepowpan P, Aobchey P, Kantapan J, Sringarm K, Roytrakul S, Sangthong P. Effects of 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone from Syzygium nervosum Seeds on Antiproliferative, DNA Damage, Cell Cycle Arrest, and Apoptosis in Human Cervical Cancer Cell Lines. Molecules. 2022;27(4):1154.
  35. Yadav N, Tripathi AK, Parveen A, Parveen S, Banerjee M. PLGA-Quercetin Nano-Formulation Inhibits Cancer Progression via Mitochondrial Dependent Caspase-3,7 and Independent FoxO1 Activation with Concomitant PI3K/AKT Suppression [published correction appears in Pharmaceutics. 2024;16(1):124.
  36. Salakou S, Kardamakis D, Tsamandas AC, et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo. 2007;21(1):123-132.
  37. Amaral C, Varela C, Borges M, et al. Steroidal aromatase inhibitors inhibit growth of hormone-dependent breast cancer cells by inducing cell cycle arrest and apoptosis. Apoptosis. 2013;18(11):1426-1436.
  38. Rahal BA, Bardaweel SK. Implications and Efficacy of Aromatase Inhibitors in Combination and Monotherapy for the Treatment of Lung Cancer. Anticancer Agents Med Chem. 2022;22(18):3114-3124.