Formulation, characterization and co-delivery of curcumin-rosemary loaded niosomes to enhance antimicrobial activity against staphylococcus aureus strains

Document Type : Research Paper

Authors

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran

10.22038/nmj.2025.78286.1914

Abstract

Objectives: Staphylococcus aureus is a common human pathogen that infects thousands of people every year. The growing resistance of this bacterium to antibiotics has increased the need for developing more effective and natural antimicrobial medications. In this study, niosomes loaded Rosmarinus officinalis (rosemary)@curcumin were synthesized, and their antimicrobial and anti-biofilm activity on clinical S. aureus strains was investigated.
Materials and Methods: Rosmarinus officinalis (rosemary) extract was prepared through maceration and its compounds were identified by GC/MS. Niosomes loaded rosemary@curcumin were synthesized through thin-film hydration. Their characteristics were analyzed with dynamic light scattering (DLS)-zetasizer, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and drug release test was studied using a dialysis bag. Finally, the antimicrobial and anti-biofilm activity against clinical strains of S. aureus were investigated using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and crystal violet methods, respectively.
Results: Formulated niosomes were spherical, averaged 442 nm in size, and had uniform particle distribution. FTIR results indicated the successful encapsulation of rosemary@curcumin inside niosomes with 94.23% encapsulation efficiency. In vitro drug release studies showed a slow-release pattern of rosemary@curcumin from niosomes. The MIC and MBC values of niosomes loaded rosemary@curcumin were between 32.5 and 62.5 µg/ml and showed higher antimicrobial activity. Also, the results of the biofilm inhibition test showed that niosomes loaded rosemary@curcumin reduced the rate of biofilm formation between 2 and 4 fold.
Conclusion: Niosomes loaded rosemary@curcumin have suitable structure and surface characteristics and can successfully inhibit S. aureus growth and prevent its biofilm formation potency.

Keywords


  1. Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, Lee JYH, et al. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol. 2023;21(6):380-395.
  2. Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcusaureus biofilm-related infections. 2023;43(8):816-832.
  3. Fábio Assad Féres R, Denise Mara Soares B, Gaspar DM, Ciro César R, Marisa Alves Nogueira D. Topical antimicrobial formulations using medicinal plant-derived essential oils targeting methicillin resistant Staphylococcus aureus. Nat Prod Res. 2023 3:1-9.
  4. Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary (Rosmarinus officinalis) and its active constituents on nervous system disorders. Iran J Basic Med Sci. 2020;23(9):1100-1112.
  5. Joana MA, Célia F, Catarina G, Diogo L, Catarina PR, Patrícia R. Rosmarinus officinalis: an update review of its phytochemistry and biological activity. Future Sci OA. 2018;1;4(4):FSO283.
  6. Khaleghian M, Sahrayi H, Hafezi Y, Mirshafeeyan M, Salehi Moghaddam Z, Farasati Far B, et al. In silico design and mechanistic study of niosome-encapsulated curcumin against multidrug-resistant Staphylococcus aureusbiofilms. Front Microb. 2023; 14: 1277533.
  7. Dias LD, Aguiar ASN, de Melo NJ, Inada NM, Borges LL, de Aquino GLB, et al. Structural basis of antibacterial photodynamic action of curcumin against aureus. Photodiagnosis Photodyn Ther. 2023; 43:103654.
  8. Apartsin E, Akhir A, Kaul G, Saxena D, Laurent R, Srivastava KK, et al. Low-generation cationic phosphorus dendrimers: Novel approach to tackle drug-resistant aureus in vitro and in vivo. Biomacromolecules. 2023;24(7):3215-3227.
  9. Haddadian A, Falahi Robattorki F, Dibah H, Soheili A, Mirzaie A. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Sci Rep. 2024; 12(1): 219382-219389.
  10. Pourmoghadasiyan B, Tavakkoli F, Beram FM, Badmasti F, Mirzaie A. Nanosized paclitaxel-loaded niosomes: Formulation, in vitro cytotoxicity, and apoptosis gene expression in breast cancer cell lines. Mol Bio Rep. 2022; 49(5): 3597-3608.
  11. Nehal I, Haidy A, Nesrine S ES, Heba AG. Rosmarinus officinalis L. hexane extract: phytochemical analysis, nanoencapsulation, and in silico, in vitro, and in vivo anti-photoaging potential evaluation. Sci Rep. 2022;12(1):13102.
  12. Amale FR, Ferdowsian S, Hajrasouliha S, Kazempoor R, Mirzaie A. Gold nanoparticles loaded into niosomes: A novel approach for enhanced antitumor activity against human ovarian cancer. Adv Powder Technol. 2021; 32(12): 4711-4722.
  13. Mansouri M, Khayam N, Jamshidifar, Pourseif T, Kianian S, Mirzaie A. Streptomycin sulfate–loaded niosomes enables increased antimicrobial and anti-biofilm activities. Frontiers in Bioengineering and Biotechnology. 2021; 9: 745099-745104.
  14. Shadvar P, Mirzaie A, Yazdani S. Fabrication and optimization of amoxicillin-loaded niosomes: an appropriate strategy to increase antimicrobial and anti-biofilm effects against multidrug-resistant Staphylococcus aureus Drug Dev Ind Pharm. 2021; 47(10): 1568-1577.
  15. Mirzaie A, Ranjbar R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniaestrains recovered from clinical samples. AMB Express. 2021; 11(1): 122-129.  
  16. Moghtaderi M, Mirzaie A, Zabet N, Moammeri A, Mansoori-Kermani A. Enhanced antibacterial activity of Echinacea angustifoliaextract against multidrug-resistant Klebsiella pneumoniae through niosome Encapsulation. Nanomaterials. 2021; 11(6): 1573-1579.
  17. Alidoust FA, Rasti B, Zamani H, Mirpour M, Mirzaie A. Rutin-coated zinc oxide nanoparticles: a promising antivirulence formulation against pathogenic bacteria. World J Microbiology Biotechnol. 2024; 40(6); 184.
  18. Heidari F, Akbarzadeh I, Nourouzian D, Mirzaie A, Bakhshandeh H. Optimization and characterization of tannic acid loaded niosomes for enhanced antibacterial and anti-biofilm activities. Advanced Powder Technology. 2020; 31(12): 4768-4781.
  19. Ana Cristina da SR, Paula Monteiro L, Mariana Maria de Azevedo B, Danielle Cristina Costa M, Celuta Sales A. Biological activities of α-Pinene and β-Pinene enantiomers.  2012; 17(6): 6305–6316.
  20. de Sousa Eduardo L, Farias TC, Ferreira SB, Ferreira PB, Lima ZN, Ferreira SB. Antibacterial activity and time-kill kinetics of positive enantiomer of alpha-pinene against strains of Staphylococcus aureus and Escherichia coli. Curr Top Med Chem. 2018;18(11):917-924.
  21. Merghni A, Belmamoun AR, Urcan AC, Bobiş O, Lassoued MA. 1,8-Cineol (Eucalyptol) disrupts membrane integrity and induces oxidative stress in methicillin-resistant Staphylococcus aureus. Antioxidants (Basel). 2023;12(7):1388.
  22. Mączka W, Duda-Madej A, Górny A, Grabarczyk M, Wińska K. Can Eucalyptol Replace Antibiotics? 2021;26(16):4933-4939.
  23. Chew-Li M, Mohd Azuraidi O, Shun-Kai Y, Wai-SY, Saila I, Swee-Hua-Erin L, et al. Antimicrobial activity and mode of action of 1,8-cineol against carbapenemase-producing Klebsiella pneumoniae. Nat Prod Res. 2023; 3:1-9.
  24. Hedayati Ch M, Abolhassani Targhi A, Shamsi F, Heidari F, Salehi Moghadam Z, Mirzaie A, et al. Niosome‐encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug‐resistant clinical strains of Pseudomonas aeruginosa. J Biomed Mat Res Part A. 2021; 109(6): 966-980.
  25. Mirzaie A, Peirovi N, Akbarzadeh I, Moghtaderi M, Heidari F, Yeganeh FE. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance. Bioorganic chemistry. 2020; 103: 104231.
  26. Guo H, Tong Y, Cheng J, Abbas Z, Li Z, Wang J, et al. Biofilm and small colony variants-An update on Staphylococcus aureus strategies toward drug resistance. Int J Mol Sci. 2022; 23(3):1241-1249.
  27. Mohammadi K, Saris PEJ. Antibiofilm effect of curcumin on Saccharomyces boulardii during beer fermentation and bottle aging. Biomolecules. 2023;13(9):1367.
  28. Zhang J, Cui X, Zhang M, Bai B, Yang Y, Fan S. The antibacterial mechanism of perilla rosmarinic acid. Biotechnol Appl Biochem. 2022;69(4):1757-1764.
  29. Allenspach M, Steuer C. alpha-Pinene: A never-ending story. Phytochemistry. 2021;190:112857.
  30. Ben Akacha B, Michalak M, Generalić Mekinić I, Kačániová M, Chaari M, Brini F, et al. Mixture design of alpha-pinene, alpha-terpineol, and 1,8-cineole: A multiobjective response followed by chemometric approaches to optimize the antibacterial effect against various bacteria and antioxidant activity. Food Sci Nutr. 2023;12(1):574-589.
  31. Jakovljević Kovač M, Pavić V, Huđ A, Cindrić I, Molnar M. Determination of suitable Macroporous resins and desorbents for carnosol and carnosic acid from deep eutectic solvent sage (Salvia officinalis) extract with assessment of antiradical and antibacterial activity. Antioxidants (Basel). 2021;10(4):556.
  32. Shi B, Wang LF, Meng WS, Chen L, Meng ZL. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction. Int J Oncol. 2017;50(6):2123-2135.
  33. Shome S, Talukdar AD, Upadhyaya H. Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnol Appl Biochem. 2022;69(6):2357-2386.
  34. Fakheran O, Khademi A, Bagherniya M, Dehghannejad M, Sathyapalan T, Sahebkar A. Antibacterial activity of curcumin against periodontal pathogens: A Systematic Review. Adv Exp Med Biol. 2021;1291:239-249.
  35. Park S, Mun S, Kim YR. Influences of added surfactants on the water solubility and antibacterial activity of rosemary extract. Food Sci Biotechnol. 2020;29(10):1373-1380.
  36. Ding T, Li T, Li J. Impact of curcumin liposomes with anti-quorum sensing properties against foodborne pathogens Aeromonas hydrophila and Serratia grimesii.  Microb Pathog. 2018;122:137-143.
  37. Packiavathy IA, Priya S, Pandian SK, Ravi AV. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa. Food Chem. 2014 1;148:453-60.
  38. Salehi S, Nourbakhsh MS, Yousefpour M, Rajabzadeh G, Sahab-Negah S. Chitosan-coated niosome as an efficient curcumin carrier to cross the blood-brain barrier: an animal study.  J Liposome Res. 2022;32(3):284-292.
  39. Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, Ahmadian E, Eftekhari A, Forouhandeh H, et al. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res. 2022;36(3):1156-1181.
  40. Khaleghian M, Sahrayi H, Hafezi Y, Mirshafeeyan M, Moghaddam ZS, Farasati Far B, et al. In silico design and mechanistic study of niosome-encapsulated curcumin against multidrug-resistant Staphylococcus aureus biofilms. Front Microbiol. 2023;14:1277533.
  41. Mansouri M, Khayam N, Jamshidifar E, Pourseif T, Kianian S, Mirzaie A. Streptomycin sulfate–loaded niosomes enables increased antimicrobial and anti-biofilm activities. Front Bioeng Biotechnol. 2021; 9: 745099.