Bioimaging comparison between synthesized carbon quantum dots and nanodiamonds

Document Type : Research Paper

Authors

1 Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3 Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

10.22038/nmj.2025.81851.2037

Abstract

Objective(s): Scientists have been focused on finding access to the potential of different materials, incredibly natural substances. This work compared two categories of nanoscale materials based on carbon sources, including carbon quantum dots (C-QDs) and detonation nanodiamonds (DNDs).
Materials and Methods: The hydrothermally synthesized C-QDs from Salvia Hispanic L. and DNDs were compared through physicochemical tests such as ultra-violet spectrophotometry (UV-Vis), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and field emission scanning microscopy (FESEM). Then, we investigated their cytotoxicity and biocompatibility on HEK293 and HepG2 cell lines, respectively. To focus on nanoparticle biodistribution and shelf life throughout the in vivo studies of rats, C-QDs and DNDs were labeled by Technetium (99mTc) radioisotope for tracking purposes.
Results: The characterization and cytotoxicity outcomes of C-QDs and DNDs confirmed both cases' relative intrinsic similarity and non-toxicity, which also gained permission to enter the in vivo studies of rats.
Conclusion: According to biodistribution assessments, despite the slight differences between their biological properties, C-QDs, and DNDs exhibited different bioaccumulation tendencies toward organ selection.

Keywords


  1. Ahmed S, Ikram S. Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B. 2016;161:141-153.
  2. Diederich F, Rubin Y. Synthetic approaches toward molecular and polymeric carbon allotropes. Angew Chem Int Ed Engl. 1992;31(9):1101-1123.
  3. Kumar SA, Jarvin M, Inbanathan SSR, Umar A, Lalla NP, Dzade NY, et al. Facile green synthesis of magnesium oxide nanoparticles using tea (Camellia sinensis) extract for efficient photocatalytic degradation of methylene blue dye. Environ Technol Innov. 2022;28:102746.
  4. Arenal R, Lopez‐Bezanilla A. Boron nitride materials: an overview from 0D to 3D (nano) structures. Wiley Interdisciplinary Reviews: Comput Mol Sci. 2015;5(4):299-309.
  5. Santana-Mayor Á, Rodríguez-Ramos R, Socas-Rodríguez B, Asensio-Ramos M, Rodríguez-Delgado MÁ. Carbon-based adsorbents. SPE. 2020; 83-127.
  6. Saleh TA. Nanomaterials: Classification, properties, and environmental toxicities. Environ Technol Innov. 2020;20:101067.
  7. Cordill MJ, Weinberger CR. Mechanical Behavior at the Nanoscale: What’s in your Toolbox? JOM. 2018;70(7):1065-1067.
  8. Wang H, O’Leary S. Electromagnetically induced transparency from electron spin coherences in semiconductor quantum wells. JOSA B. 2012;29(2):A6-A16.
  9. Brand C, Pfnür H, Landolt G, Muff S, Das T, Tegenkamp C. Observation of correlated spin-orbit order in a strongly anisotropic quantum wire system. Nat Commun. 2015;6(1):1-7.
  10. Li J, Yun X, Hu Z, Xi L, Li N, Tang H, et al. Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. J Mater Chem A. 2019;7(46):26311-6325.
  11. Molaei MJ. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta. 2019;196:456-478.
  12. Janus Ł, Radwan-Pragłowska J, Piątkowski M, Bogdał D. Facile synthesis of surface-modified carbon quantum dots (CQDs) for biosensing and bioimaging. Mater. 2020;13(15):3313.
  13. Karami MH, Abdouss M. Recent advances of carbon quantum dots in tumor imaging. Nanomed J. 2024;11(1):13-35.
  14. Mehra NK, Jain NK. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting. J Drug Target. 2016;24(4):294-308.
  15. Zou F-R, Wang S-N, Wang F-F, Liu D, Li Y. Synthesis of lanthanide-functionalized carbon quantum dots for chemical sensing and photocatalytic application. Catal. 2020;10(8):833.
  16. Velayati M, Hassani H, Sabouri Z, Mostafapour A, Darroudi M. Green-based biosynthesis of Se nanorods in chitosan and assessment of their photocatalytic and cytotoxicity effects. Environ Technol Innov. 2022;27:102610.
  17. Liang X, Li N, Zhang R, Yin P, Zhang C, Yang N, et al. Carbon-based SERS biosensor: From substrate design to sensing and bioapplication. NPG Asia Mater. 2021;13(1):1-36.
  18. Hsiao P-H, Timjan S, Kuo K-Y, Juan J-C, Chen C-Y. Optical management of CQD/AgNP@ SiNW arrays with highly efficient capability of dye degradation. Catal. 2021;11(3):399.
  19. Vo NTT, You S-J, Pham M-T, Pham VV. A green synthesis approach of p-n CuO/ZnO junctions for multifunctional photocatalysis towards the degradation of contaminants. Environ Technol Innov. 2023;32:103285.
  20. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov. 2022;26:102336.
  21. Tajik S, Dourandish Z, Zhang K, Beitollahi H, Van Le Q, Jang HW, Shokouhimehr M. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020;10(26):15406-15429.
  22. Mandal P, Ghosh SK, Grewal HS. Graphene oxide coated aluminium as an efficient antibacterial surface. Environ Technol Innov. 2022;28:102591.
  23. Galeas S, Valdivieso-Ramírez CS, Pontón PI, Guerrero VH, Goetz V. Photocatalytic degradation of phenol under visible light irradiation by using ferrous oxalate synthesized from iron-rich mineral sands via a green hydrothermal route. Environ Technol Innov. 2023;32:103325.
  24. Permatasari FA, Irham MA, Bisri SZ, Iskandar F. Carbon-based quantum dots for supercapacitors: Recent advances and future challenges. Nanomater. 2021;11(1):91.
  25. Bak S, Kim D, Lee H. Graphene quantum dots and their possible energy applications: A review. Curr Appl Phys. 2016;16(9):1192-1201.
  26. Rahbar M, Mehrzad M, Behpour M, Mohammadi-Aghdam S, Ashrafi M. S, N co-doped carbon quantum dots/TiO2 nanocomposite as highly efficient visible light photocatalyst. Nanotechnol. 2019;30(50):505702.
  27. Shao B, Liu Z, Zeng G, Wang H, Liang Q, He Q, et al. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J. Mater Chem A. 2020;8(16):7508-7535.
  28. Dager A, Baliyan A, Kurosu S, Maekawa T, Tachibana M. Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: application of C-QDs to grow fluorescent protein crystals. Sci Rep. 2020;10(1):1-15.
  29. Robertson J. Gap states in diamond-like amorphous carbon. Philos Mag B. 1997;76(3):335-350.
  30. Tiwari SK, Kumar V, Huczko A, Oraon R, Adhikari AD, Nayak G. Magical allotropes of carbon: prospects and applications. Crit Rev Solid State Mater Sci. 2016;41(4):257-317.
  31. Hu M, Zhao Z, Tian F, Oganov AR, Wang Q, Xiong M, et al. Compressed carbon nanotubes: a family of new multifunctional carbon allotropes. Sci Rep. 2013;3(1):1-7.
  32. Fedortchouk Y. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth-Sci Rev. 2019;193:45-65.
  33. Cheng F, Jiang S. Cavitation erosion resistance of diamond-like carbon coating on stainless steel. Appl Surf Sci. 2014;292:16-26.
  34. Xu C, He D, Wang H, Guan J, Liu C, Peng F, et al. Nano-polycrystalline diamond formation under ultra-high pressure. IJRMHM. 2013;36:232-237.
  35. Suga Y, Watanabe T. Plasma optical emission spectroscopy in supercritical fluid for material synthesis process. MRS-J. 2010;35(1):15-27.
  36. Daulton T, Kirk M, Lewis R, Rehn L. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl Instrum Methods Phys Res B. 2001;175:12-20.
  37. Jia S, Zhang D, Xuan Y, Nastac L. An experimental and modeling investigation of aluminum-based alloys and nanocomposites processed by ultrasonic cavitation processing. Appl Acoust. 2016;103:226-231.
  38. Angus JC. Diamond synthesis by chemical vapor deposition: The early years. Diam Relat Mater. 2014;49:77-86.
  39. Fahrenholtz WG. Detonation Synthesis of Nanomaterials. Missouri S&T. 2017.
  40. Yang N. Novel aspects of diamond. Topics in Applied Physics Springer International Publishing, Cham. 2015.
  41. Mochalin V, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nano-Enabled Medical Applications. 2020:313-350.
  42. Shukla A, Parmar P, Saraf M. Radiation, radionuclides and bacteria: An in-perspective review. J Environ Radioact. 2017;180:27-35.
  43. Skowron K. Properties of the nanocrystalline layers obtained by methods of severe plastic deformation in metals and alloys for biomedical applications. 2021.
  44. Homayun B, Lin X, Choi H-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11(3):129.
  45. Kesharwani P, Ghanghoria R, Jain NK. Carbon nanotube exploration in cancer cell lines. Drug Discov Today. 2012;17(17-18):1023-1030.
  46. Teow Y, Valiyaveettil S. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale. 2010;2(12):2607-2613.
  47. Yang L, Liu B, Ye Z, Yang C, Wang Z, Chen B, et al. Investigation into surface composition of nitrogen-doped niobium for superconducting RF cavities. Nanotechnology. 2021;32(24):245701.
  48. Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 2020;21(3):e146-e156.
  49. Miranda SEM. Evaluation of lapachol radiolabeled with Technetium-99m as tumoral marker and development and characterization of nanoemulsion containing lapachol.
  50. de Barros ALB, Cardoso VN, das Graças Mota L, Alves RJ. Synthesis and biodistribution studies of carbohydrate derivatives radiolabeled with technetium-99m. BMCL. 2010;20(1):307-315.
  51. Dilworth J, Parrott S. The biomedical chemistry of technetium and rhenium. Chem Soc Rev. 1998;27(1):43-55.
  52. Madru R, Kjellman P, Olsson F, Wingårdh K, Ingvar C, Ståhlberg F, et al. 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J. Nucl Med. 2012;53(3):459-463.
  53. Narra VR, Sastry KS, Goddu SM, Howell RW, Strand SE, Rao DV. Relative biological effectiveness of 99mTc radiopharmaceuticals. Med Phys. 1994;21(12):1921-1926.
  54. Wang Y, Xu C, Ow H. Commercial nanoparticles for stem cell labeling and tracking. Theranostics. 2013;3(8):544.
  55. Kamelnia E, Divsalar A, Darroudi M, Yaghmaei P, Sadri K. Synthesis, 99mTc-radiolabeling, and biodistribution of new cellulose nanocrystals from Dorema kopetdaghens. Int J Biol Macromol. 2020;146:299-310.
  56. Nemati S, Hosseini HA, Hashemzadeh A, Mohajeri M, Sabouri Z, Darroudi M, Oskuee RK. Cytotoxicity and photocatalytic applications of biosynthesized ZnO nanoparticles by Rheum turketanicum rhizome extract. Mater Res Express. 2019;6(12):125016.
  57. Thongsai N, Supchocksoonthorn P, Dwyer JH, Wei W, Sun J, Gopalan P, Paoprasert P. High-capacity adsorbent/sensor from nylon 6 derived carbon dots on SiO2 substrate via one-step surface grafting. Mater Sci Eng B. 2020;262:114692.
  58. Sadri K, Ren Q, Zhang K, Paudyal B, Devadhas D, Rodeck U, Thakur M. PET imaging of EGFR expression in nude mice bearing MDA-MB-468, a human breast adenocarcinoma. Nucl Med Commun. 2011;32(7):563-569.
  59. Gubin S, Popkov O, Yurkov GY, Nikiforov V, Koksharov YA, Eremenko N. Magnetic nanoparticles fixed on the surface of detonation nanodiamond microgranules. Diam Relat Mater. 2007;16(11):1924-1928.
  60. Walekar LS, Zheng M, Zheng L, Long M. Selenium and nitrogen co-doped carbon quantum dots as a fluorescent probe for perfluorooctanoic acid. Mikrochim Acta. 2019;186(5):1-9.
  61. Souza da Costa R, Ferreira da Cunha W, Simenremis Pereira N, Marti Ceschin A. An Alternative Route to Obtain Carbon Quantum Dots from Photoluminescent Materials in Peat. Mater. 2018;11(9):1492.
  62. Durazzo A, Kiefer J, Lucarini M, Camilli E, Marconi S, Gabrielli P, et al. Qualitative analysis of traditional italian dishes: FTIR approach. Sustainability. 2018;10(11):4112.
  63. Fuente E, Menendez J, Suarez D, Montes-Morán M. Basic surface oxides on carbon materials: a global view. Langmuir. 2003;19(8):3505-3511.
  64. Amjadi M, Hallaj T, Asadollahi H, Song Z, de Frutos M, Hildebrandt N. Facile synthesis of carbon quantum dot/silver nanocomposite and its application for colorimetric detection of methimazole. Sens Actuators B: Chem. 2017;244:425-432.
  65. Chung P-H, Perevedentseva E, Cheng C-L. The particle size-dependent photoluminescence of nanodiamonds. Surf Sci.2007;601(18):3866-3870.
  66. Liu ML, Chen BB, Li CM, Huang CZ. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019;21(3):449-471.
  67. Yuk SB, Lee JM, Namgoong JW, Sakong C, Hwang TG, Kim SH, et al. Synthesis of bay-linked perylene dimers with enhanced solubility for high optical density black matrix material. Dyes Pigm. 2019;171:107695.
  68. Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LC. The nitrogen-vacancy colour centre in diamond. Phys Rep. 2013;528(1):1-45.
  69. Hossein Banazadeh M, Saidi MS, Firoozabadi B. Numerical Analysis of Flow and Mass Transfer in the Renal Glomeruli Capillary Network. Modares Mech Eng. 2014;14(8).
  70. Moffat D, Fourman J. The vascular pattern of the rat kidney. J Anat. 1963;97(Pt 4):543.
  71. Nazarkovsky M, de Mello HL, Bisaggio RC, Alves LA, Zaitsev V. Hybrid suspension of nanodiamonds-nanosilica/titania in cytotoxicity tests on cancer cell lines. Inorg Chem Commun. 2020;111:107673.
  72. Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JH. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces. 2010;2(10):2924-2932.