The role of nano-particles in nerve tissue engineering: opportunities and challenges

Document Type : Review Paper

Authors

1 Anatomical Sciences & Cognitive Neuroscience Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

2 Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

10.22038/nmj.2025.78808.1932

Abstract

Neurodegeneration, scar tissue formation, and communication disruption between neurons and cells are the primary concerns associated with nerve damage. Despite advancements, regenerating nerve tissue at the injury site remains a significant hurdle in medical treatment. Nerve tissue engineering presents a promising avenue in regenerative medicine for addressing these challenges in repairing damaged or diseased nervous systems. However, achieving an optimal neural guidance system is still a considerable endeavor. One approach that shows potential in aiding nerve regeneration involves the utilization of nanoparticles. These minute entities, situated at the forefront of nanotechnology, possess unique size-dependent characteristics that offer promise in surmounting numerous obstacles encountered in tissue engineering. They facilitate cell adhesion, proliferation, and differentiation, while also supporting neurite growth—a vital aspect of nerve regeneration. Additionally, nanoparticles serve diverse roles, including nerve guidance, pollution mitigation, transportation of growth factors, and reinforcement of scaffold structures, among others. Various studies have explored the application of nanoparticles. This review focuses on commonly utilized types of nanoparticles and analyzes their advantages and challenges in nerve regeneration.

Keywords


1.    Kumar R, Aadil KR, Ranjan S, Kumar VB. Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Deliv Sci Technol. 2020;57:101617.
2.    Ebrahimi-kia Y, Davoudi P, Bordbar S. Tissue Engineering for Sciatic Nerve Repair: Review of Methods and Challenges. J Med Biol Eng. 2023;43(6):663-671.
3.    Khan FA, Almohazey D, Alomari M, Almofty SA. Impact of nanoparticles on neuron biology: current research trends. Int J Nanomedicine. 2018:2767-2776.
4.    Qian Y, Lin H, Yan Z, Shi J, Fan C. Functional nanomaterials in peripheral nerve regeneration: scaffold design, chemical principles and microenvironmental remodeling. Materials Today. 2021;51:165-187.
5.    Javed R, Ao Q. Nanoparticles in peripheral nerve regeneration: A mini review. J Neurorestoratology. 2022;10(1):1-12.
6.    Shi S, Ou X, Cheng D. Nanoparticle-Facilitated Therapy: Advancing Tools in Peripheral Nerve Regeneration. Int J Nanomedicine. 2024:19-34.
7.    Aydemir Sezer U, Ozturk Yavuz K, Ors G, Bay S, Aru B, Sogut O, et al. Zero‐valent iron nanoparticles containing nanofiber scaffolds for nerve tissue engineering. Tissue Eng Regen Med. 2020;14(12):1815-1826.
8.    Antman‐Passig M, Giron J, Karni M, Motiei M, Schori H, Shefi O. Magnetic assembly of a multifunctional guidance conduit for peripheral nerve repair. Adv Funct Mater. 2021;31(29):2010837.
9.    Asgari V, Landarani-Isfahani A, Salehi H, Amirpour N, Hashemibeni B, Rezaei S, et al. The story of nanoparticles in differentiation of stem cells into neural cells. Neurochem Res. 2019;44:2695-2707.
10.    Li J, Zhang J, Wang X, Kawazoe N, Chen G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016;8(15):7992-8007.
11.    Rivera-Gil P, Jimenez De Aberasturi D, Wulf V, Pelaz B, Del Pino P, Zhao Y, et al. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res. 2013;46(3):743-749.
12.    Lv L, Liu Y, Zhang P, Zhang X, Liu J, Chen T, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials. 2015;39:193-205.
13.    Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662-668.
14.    Mili B, Das K, Kumar A, Saxena A, Singh P, Ghosh S, et al. Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J Mater Sci: Mater Med. 2018;29:1-13.
15.    Chen L, Watson C, Morsch M, Cole NJ, Chung RS, Saunders DN, et al. Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium phosphate-lipid nanoparticles. Front Neurosci. 2017;11:476.
16.    Markoutsa E, Xu P. Redox potential-sensitive N-acetyl cysteine-prodrug nanoparticles inhibit the activation of microglia and improve neuronal survival. Mol Pharm. 2017;14(5):1591-1600.
17.    Gliga AR, Edoff K, Caputo F, Källman T, Blom H, Karlsson HL, et al. Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Sci Rep. 2017;7(1):9284.
18.    Biazar E, Khorasani M, Zaeifi D. Nanotechnology for peripheral nerve regeneration. 2010.
19.    Alon N, Miroshnikov Y, Perkas N, Nissan I, Gedanken A, Shefi O. Substrates coated with silver nanoparticles as a neuronal regenerative material. Int J Nanomedicine. 2014;9(sup1):23-31.
20.    Cho A-N, Jin Y, Kim S, Kumar S, Shin H, Kang H-C, et al. Aligned brain extracellular matrix promotes differentiation and myelination of human-induced pluripotent stem cell-derived oligodendrocytes. ACS Appl Mater Interfaces. 2019;11(17):15344-15353.
21.    Saderi N, Rajabi M, Akbari B, Firouzi M, Hassannejad Z. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. J Mater Sci: Mater Med. 2018;29:1-10.
22.    Saremi J, Khanmohammadi M, Azami M, Ai J, Yousefi‐Ahmadipour A, Ebrahimi‐Barough S. Tissue‐engineered nerve graft using silk‐fibroin/polycaprolactone fibrous mats decorated with bioactive cerium oxide nanoparticles. J Biomed Mater Res A. 2021;109(9):1588-1599.
23.    Jaswal R, Shrestha S, Shrestha BK, Kumar D, Park CH, Kim CS. Nanographene enfolded AuNPs sophisticatedly synchronized polycaprolactone based electrospun nanofibre scaffold for peripheral nerve regeneration. Mater Sci Eng C. 2020;116:111213.
24.    Motamedi AS, Mirzadeh H, Hajiesmaeilbaigi F, Bagheri‐Khoulenjani S, Shokrgozar MA. Piezoelectric electrospun nanocomposite comprising Au NPs/PVDF for nerve tissue engineering. J Biomed Mater Res A. 2017;105(7):1984-1993.
25.    Ding T, Yin J-B, Hao H-P, Zhu C, Zhang T, Lu Y-C, et al. Tissue engineering of nanosilver-embedded peripheral nerve scaffold to repair nerve defects under contamination conditions.  Int J Artif Organs. 2015;38(9):508-516.
26.    Javidi H, Ramazani Saadatabadi A, Sadrnezhaad SK, Najmoddin N. Preparation and characterization of self-stimuli conductive nerve regeneration conduit using co-electrospun nanofibers filled with gelatin-chitosan hydrogels containing polyaniline-graphene-ZnO nanoparticles.  Int J Polym Mater Polym. 2024;73(3):165-175.
27.    Vial S, Reis RL, Oliveira JM. Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Curr Opin Solid State Mater Sci. 2017;21(2):92-112.
28.    Baranes K, Shevach M, Shefi O, Dvir T. Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Lett. 2016;16(5):2916-2920.
29.    Seyedebrahimi R, Razavi S, Varshosaz J, Vatankhah E, Kazemi M. Beneficial effects of biodelivery of brain-derived neurotrophic factor and gold nanoparticles from functionalized electrospun PLGA scaffold for nerve tissue engineering. J Clust Sci. 2021;32:631-642.
30.    Demir US, Shahbazi R, Calamak S, Ozturk S, Gultekinoglu M, Ulubayram K. Gold nano‐decorated aligned polyurethane nanofibers for enhancement of neurite outgrowth and elongation. J Biomed Mater Res A. 2018;106(6):1604-1613.
31.    Jahromi M, Razavi S, Seyedebrahimi R, Reisi P, Kazemi M. Regeneration of rat sciatic nerve using PLGA conduit containing rat ADSCs with controlled release of BDNF and gold nanoparticles. J Mol Neurosci. 2021;71:746-760.
32.    Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomater. 2010;31(30):7606-7619.
33.    Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int. 2013;2013.
34.    Grant SA, Spradling CS, Grant DN, Fox DB, Jimenez L, Grant DA, et al. Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2014;102(2):332-339.
35.    Manikandan R, Manikandan B, Raman T, Arunagirinathan K, Prabhu NM, Basu MJ, et al. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim Acta: A Mol Biomol Spectrosc. 2015;138:120-129.
36.    Malachová K, Praus P, Rybková Z, Kozák O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl Clay Sci. 2011;53(4):642-645.
37.    Mohammed Fayaz A, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan P, et al. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV-and HSV-transmitted infection. Int J Nanomedicine. 2012:5007-5018.
38.    Adhikari U, Ghosh A, Chandra G. Nano particles of herbal origin: A recent eco-friend trend in mosquito control. Asian Pac J Trop Dis. 2013;3(2):167.
39.    Mirsanei JS, Nazari M, Shabani R, Govahi A, Eghbali S, Ajdary M, et al. Does Gold-Silver Core-Shell Nanostructure with Alginate Coating Induce Apoptosis in Human Lymphoblastic Tumoral (Jurkat) Cell Line?. Rep Biochem Mol Biol. 2023;12(2):233.
40.    Foroutan Koudehi M, Imani Fooladi AA, Aghozbeni EAH, Nourani MR. Nano bioglass/gelatin scaffold enhanced by nanosilver as an antibacterial conduit for peripheral nerve regeneration. Mater Technol. 2019;34(13):776-784.
41.    Kumar S, Raj S, Jain S, Chatterjee K. Multifunctional biodegradable polymer nanocomposite incorporating graphene-silver hybrid for biomedical applications. Mater Design. 2016;108:319-332.
42.    Nissan I, Schori H, Lipovsky A, Alon N, Gedanken A, Shefi O. Effect of different densities of silver nanoparticles on neuronal growth.  J Nanoparticle Res. 2016;18:1-10.
43.    Repar N, Li H, Aguilar JS, Li QQ, Drobne D, Hong Y. Silver nanoparticles induce neurotoxicity in a human embryonic stem cell-derived neuron and astrocyte network. Nanotoxicology. 2018;12(2):104-16.
44.    Win-Shwe T-T, Fujimaki H. Nanoparticles and neurotoxicity. Int J Mol Sci. 2011;12(9):6267-6280.
45.    Srivastava AK, Yadav SS, Mishra S, Yadav SK, Parmar D, Yadav S. A combined microRNA and proteome profiling to investigate the effect of ZnO nanoparticles on neuronal cells. Nanotoxicology. 2020;14(6):757-773.
46.    Liu H, Yang H, Fang Y, Li K, Tian L, Liu X, et al. Neurotoxicity and biomarkers of zinc oxide nanoparticles in main functional brain regions and dopaminergic neurons. Sci Total Environ. 2020;705:135809.
47.    Irie T, Kawakami T, Sato K, Usami M. Sub-toxic concentrations of nano-ZnO and nano-TiO2 suppress neurite outgrowth in differentiated PC12 cells. J Toxicol Sci. 2017;42(6):723-729.
48.    Stratton S, Wang S, Hashemi S, Pressman Y, Nanchanatt J, Oudega M, et al. A scaffold containing zinc oxide for Schwann cell-mediated axon growth. J Neural Eng. 2023;20(6):066009.
49.    Qian Y, Cheng Y, Song J, Xu Y, Yuan WE, Fan C, et al. Mechano‐informed biomimetic polymer scaffolds by incorporating self‐powered zinc oxide nanogenerators enhance motor recovery and neural function. Small. 2020;16(32):2000796.
50.    Iman M, Araghi M, Panahi Y, Mohammadi R. Effects of chitosan-zinc oxide nanocomposite conduit on transected sciatic nerve: an animal model study. Bull Emerg Trauma. 2017;5(4):240.
51.    Liu M, Yu W, Zhang F, Liu T, Li K, Lin M, et al. Fe3O4@ Polydopamine-Labeled MSCs targeting the spinal cord to treat neuropathic pain under the guidance of a magnetic field. Int J Nanomedicine. 2021:3275-3292.
52.    De Simone U, Roccio M, Gribaldo L, Spinillo A, Caloni F, Coccini T. Human 3D cultures as models for evaluating magnetic nanoparticle CNS cytotoxicity after short-and repeated long-term exposure. Int J Mol Sci. 2018;19(7):1993.
53.    Shlapakova LE, Botvin VV, Mukhortova YR, Zharkova II, Alipkina SI, Zeltzer A, et al. Magnetoactive Composite Conduits Based on Poly (3-hydroxybutyrate) and Magnetite Nanoparticles for Repair of Peripheral Nerve Injury. ACS Appl Bio Mater. 2024.
54.    Tamjid M, Abdolmaleki A, Mahmoudi F, Mirzaee S. Neuroprotective effects of Fe3O4 nanoparticles coated with omega-3 as a novel drug for recovery of sciatic nerve injury in rats. Gene, Cell and Tissue. 2023;10(2).
55.    Harrison J, Bartlett CA, Cowin G, Nicholls PK, Evans CW, Clemons TD, et al. In vivo imaging and biodistribution of multimodal polymeric nanoparticles delivered to the optic nerve. Small. 2012;8(10):1579-1589.
56.    Li J, Cai P, Shalviri A, Henderson JT, He C, Foltz WD, et al. A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood–brain barrier targeting brain metastases of breast cancer. ACS Nano. 2014;8(10):9925-9940.
57.    Giannaccini M, Calatayud MP, Poggetti A, Corbianco S, Novelli M, Paoli M, et al. Magnetic nanoparticles for efficient delivery of growth factors: stimulation of peripheral nerve regeneration. Adv Healthc Mater. 2017;6(7):1601429.
58.    Al-Haideri DH, Al-Timmemi HA. Efficacy of chitosan nanoparticles and mesenchymal stem cells in rabbit models for sciatic nerve regeneration. Iraqi J Vet Sci. 2024;38(2):369-377.
59.    Yuan M, Wang Y, Qin Y-X. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: Superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF). Nanomedicine. 2018;14(4):1337-1347.
60.    Wang Y, Li Y, Huang Z, Yang B, Mu N, Yang Z, et al. Gene delivery of chitosan-graft-polyethyleneimine vectors loaded on scaffolds for nerve regeneration. Carbohydr Polym. 2022;290:119499.
61.    Lackington WA, Raftery RM, O’Brien FJ. In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun. Acta Biomater. 2018;75:115-128.
62.    Cerqueira SR, Oliveira JM, Silva NA, Leite‐Almeida H, Ribeiro‐Samy S, Almeida A, et al. Microglia response and in vivo therapeutic potential of methylprednisolone‐loaded dendrimer nanoparticles in spinal cord injury. Small. 2013;9(5):738-749.
63.    Muldoon LL, Sàndor M, Pinkston KE, Neuwelt EA. Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurg. 2005;57(4):785-796.
64.    Tao J, Zhang J, Du T, Xu X, Deng X, Chen S, et al. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater. 2019;90:49-59.
65.    Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HE-S. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int J Nanomedicine. 2018:5637-55.
66.    Gelain F. Novel opportunities and challenges offered by nanobiomaterials in tissue engineering. Int J Nanomedicine. 2008;3(4):415-24.
67.    Ferrão R, Rai A. Advanced Polymeric Nanoparticles for the Treatment of Neurodegenerative Diseases. Chemical Physics of Polymer Nanocomposites: Processing, Morphology, Structure, Thermodynamics, Rheology. 2024;3:843-85.
68.    Kunisaki A, Kodama A, Ishikawa M, Ueda T, Lima MD, Kondo T, et al. Oxidation-treated carbon nanotube yarns accelerate neurite outgrowth and induce axonal regeneration in peripheral nerve defect. Sci Rep. 2023;13(1):21799.
69.    Son B, Park S, Cho S, Kim JA, Baek S-H, Yoo KH, et al. Improved Neural Inductivity of Size-Controlled 3D Human Embryonic Stem Cells Using Magnetic Nanoparticles. Biomater Res. 2024;28:0011.