Advancements in utilizing exosomes for cancer therapy through drug delivery systems: recent developments

Document Type : Review Paper

Authors

Department of Chemistry, Amirkabir University of Technology, Tehran, Iran

10.22038/nmj.2025.79681.1967

Abstract

Researchers have successfully developed and validated diverse loading strategies, utilizing both endogenous and exogenous approaches, in laboratory and animal models, showcasing their effectiveness in advancing molecular biology research. Extracellular vesicles have advantages over synthetic carriers in disease management and therapeutics. However, their clinical application is hindered by challenges such as limited specificity, low production yield, storage stability, and targeting capability. Addressing these challenges and exploring exosome engineering techniques is crucial. Cell-derived exosomes can serve as carriers for therapeutic molecules, enabling targeted drug delivery. Understanding exosome formation and developing efficient engineering methods are essential for advancing clinical therapeutic strategies. Exosomes offer a unique approach to targeted drug delivery through intercellular communication. These natural liposomes carry endogenous biomolecules, ensuring biocompatibility and allowing for cargo loading. Genetic or chemical modifications can improve targeting and drug loading capabilities. Importantly, exosomes have weak interactions with serum proteins, extending the lifespan of the cargo. By combining the capabilities of artificial nanocarriers and intercellular signaling, exosomes provide new and reliable strategies for drug administration and medical interventions. This review examines diverse exosome types, preparation methodologies, cargo encapsulation, and their efficacy in delivering therapeutic agents across different diseases. It also highlights global companies involved in the development and testing of exosome-based therapies.

Keywords


  1. Ibrahim K, Khalid S, Idrees K. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019; 12: 908-931.
  2. Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnol.2004; 2: 1-6.
  3. Wang E C, Wang A Z. Nanoparticles and their applications in cell and molecular biology. Integr Biol. 2014;6: 9-26.
  4. Nath D, BanerjeeP. Green nanotechnology a new hope for medical biology. EnvironToxicol Pharmacol. 2013; 36: 997-1014.
  5. Felice B, PrabhakaranMP, Rodríguez AP, Ramakrishna S. Drug delivery vehicles on a nano-engineering perspective. Mater Sci Eng. 2014; 41: 178-195.
  6. Roshancheshm S, Asadi A, Khoshnazar SM, Abdolmaleki A, Omar KZ, Wasman SS. Application of natural and modified exosomes a drug delivery system. Nanomed J.2022; 9(3): 192-204.
  7. Qadri S, HaikY, Mensah BE, Bashir G, Fernandez CMJ. Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine: Nanotechnology, Biology and Medicine. 2017; 13: 2241-2250.
  8. Ramadi K B, Mohamed Y A, Al-Sbiei, A, Almarzooqi S, Bashir G, Al Dhanhani A. Acute systemic exposure to silver-based nanoparticles induces hepatotoxicity and NLRP3-dependent inflammation. Nanotoxicol. 2016; 10:1061-1074.
  9. Martinho N, Damge C, Reis, CP. Recent advances in drug delivery systems. J Biomater Nanobiotechnol. 2011; 2:510-526.
  10. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed.2017; 12: 2957-2978.

11.Jinjun S, Alexander V R, Omid F C, Robert L. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010; 10:3223-3230.

12.Qadri S, Abdulrehman T, Azzi J, Mansour S, Haik Y. AgCuB nanoparticle eradicates intracellular S. aureus infection in bone cells: in vitro. Emerg. Mater. 2019; 2: 219-231.

  1. Parveen S, MisraR, Sahoo S K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics, and imaging. Nanomedicine Nanotech Biol Med. 2012; 8: 147-166.
  2. Noruzi M, ZareD, Khoshnevisan K, Davoodi D. Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim. Acta A. 2016; 79: 1461-1465.
  3. Al Tamimi, S, Ashraf S, Abdulrehman T, Parray A, Mansour S A, Haik Y. Synthesis and analysis of silver-copper alloy nanoparticles of different ratios manifest anticancer activity in breast cancer cells. Cancer Nanotech. 2020; 11:1-16.
  4. Iravani S, Varma RS. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019; 21(18): 4839-4867.

17. Karami MH, Abdouss M, Rahdar A, Pandey S. Graphene quantum dots: background, synthesis methods, and applications as nanocarrier in drug delivery and cancer treatment: an updated review. Inorg Chem Commun. 2024;161: 112032.

  1. Ľudmila H, Michal J, Andrea Š, Aleš H. Lignin, potential products and their market value. Wood Res. 2015; 60(6): 973-986.
  2. N’Diaye ER, Orefice NS, Ghezzi C, Boumendjel A. Chemically Modified Extracellular Vesicles and Applications in Radiolabeling and Drug Delivery. Pharmaceutics. 2022; 14(3):653-668.
  3. Wsoo MA, Shahir S, Mohd Bohari SP, Nayan NHM, Razak SIA. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: a new perspective. Carbohydr Res. 2020; 491: 107978.
  4. Liu R, Dai L, Xu C, Wang K, Zheng C, Si C. Lignin-based microand nanomaterials and their composites in biomedical applications. Chem Sus Chem. 2020; 13(17): 4266-4283.
  5. Spiridon I. Biological and pharmaceutical applications of lignin and its derivatives: a mini-review. Cellulose Chem Technol. 2018; 52(7- 8): 543-550.
  6. Roshangar L, Rad JS, Kheirjou R, Khosroshahi AF. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing. J Tissue Eng Regen Med. 2021; 15(6): 546-555.
  7. Li YY, Wang B, Ma MG, Wang B. Review of recent development on preparation, properties, and applications of cellulose-based functional materials. Int J Polym Sci. 2018; 2018: 1-18.
  8. Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: challenges and opportunities. Int J Biol Macromol. 2021; 178: 193-228.
  9. Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta. 2014; 1838(11): 2954-2965.
  10. Zheng Z, Chen M, Xing P, Yan X, Xie B. Increased expression of exosomal AGAP2-AS1 (AGAP2 Antisense RNA 1) in breast cancer cells inhibits trastuzumab-induced cell cytotoxicity. Med Sci Monit. 2019; 25: 2211-2220.
  11. Madni A, Kousar R, Naeem N, Wahid F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J Bioresour Bioprod. 2021; 6(1): 11-25.
  12. Hickey RJ, Pelling AE. Cellulose Biomaterials for tissue engineering. Front Bioeng Biotechnol. 2019; 7: 45.
  13. Dugan JM, Gough JE, Eichhorn SJ. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine (Lond). 2013; 8(2): 287-298.
  14. Dugan JM, Gough JE, Eichhorn SJ. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine (Lond). 2013; 8(2): 287-298.
  15. Mohite BV, Patil SV. A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem. 2014; 61(2): 101- 110.
  16. Duval A, Lawoko M. A review on lignin-based polymeric, micro-and nano-structured materials. React Funct Polym. 2014; 85: 78-96.
  17. Chio C, Sain M, Qin W. Lignin utilization: a review of lignin depolymerization from various aspects. Renewable Sustainable Energy Rev. 2019; 107: 232-249.
  18. Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR. Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol. 2016; 42: 40-53.
  19. Ning K, Wang T, Sun X, Zhang P, Chen Y, Jin J, Hua D. UCH-L1 containing exosomes mediate chemotherapeutic resistance transfer in breast cancer. J Surg Oncol. 2017; 115(8): 932-940.
  20. Wang J, Guan X, Zhang Y, Ge S, Zhang L, Li H, Wang X, Liu R, Ning T, Deng T, Zhang H, Jiang X, Ba Y, Huang D. Exosomal miR-27a Derived from Gastric Cancer Cells Regulates the Transformation of Fibroblasts into Cancer-Associated Fibroblasts. Cell Physiol Biochem. 2018; 49(3): 869-883.
  21. Fu H, Yang H, Zhang X, Wang B, Mao J, Li X, Wang M, Zhang B, Sun Z, Qian H, Xu W. Exosomal TRIM3 is a novel marker and therapy target for gastric cancer. J Exp Clin Cancer Res. 2018; 37(1): 162
  22. Subia B, Kundu J, Kundu SC. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Eng. 2010; 141: 13-18.
  23. Chouhan D, Dey N, Bhardwaj N, Mandal BB. Emerging and inno- vative approaches for wound healing and skin regeneration: current status and advances. Biomaterials. 2019; 216: 119267.
  24. Fishman JA. Infection in Organ transplantation. Am J Transplant. 2017; 17(4): 856-879.
  25. Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie G, Ma Y, Shen L. Exosomal transfer of tumor-associated macrophagederived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res. 2017; 36:53.
  26. Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001; 52: 443-451.
  27. Ige OO, Umoru LE, Aribo S. Natural products: a minefield of biomaterials. Int Sch Res Notices. 2012; 2012: 983062.
  28. Qi H, Liu C, Long L, Ren Y, Zhang SS, Chang X, Qian X, Jia HH, Zhao J, Sun J, Hou X, Yuan X, Kang C. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano. 2016; 10(3): 3323-3333.
  29. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV. Development of exosomeencapsulated paclitaxel to overcome MDR in cancer cells.Nanomedicine. 2016; 12(3): 655-664
  30. Alzagameem A, Khaldi HBE, Kamm B, Schulze M. Lignocellulosic biomass for energy, biofuels, biomaterials, and chemicals. Springer; 2018: 95-132.
  31. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl. 2011; 50(24): 5438-5466.
  32. Deoliveira BHG, Dasilva RR, DaSilva BH, Tercjak A, Gutierrez J, Lustri WR. A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym. 2016; 153: 406-420.
  33. Safari B, Aghanejad A, Kadkhoda J, Aghazade M, Roshangar L, Davaran S. Biofunctional phosphorylated magnetic scaffold for bone tissue engineering. Colloids Surf B Biointerfaces. 2022; 211: 112284.
  34. Nour S, Imani R, Chaudhry GR, Sharifi AM. Skin wound healing assisted by angiogenic targeted tissue engineering: A comprehensive review of bioengineered approaches. J Biomed Mater Res A. 2021; 109(4): 453-478.
  35. Bedian L, Villalba RAM, Hernández VG, Parra SR, Iqbal HM. Bio-based materials with novel characteristics for tissue engineering applications - a review. Int J Biol Macromol. 2017; 98: 837-846.
  36. Behera SS, Das U, Kumar A, Bissoyi A, Singh AK. Chitosan/ TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: application in wound dressing and skin regeneration. Int J Biol Macromol. 2017; 98: 329-340.
  37. O’Brien K, Lowry MC, Corcoran C, Martinez VG, Daly M, Rani S, Gallagher WM, Radomski MW, MacLeod RA,O’Driscoll L. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget. 2015; 6(32): 32774-32789.
  38. Talikowska M, Fu X, Lisak G. Application of conducting polymers to wound care and skin tissue engineering: a review. Biosens Bioelectron. 2019; 135: 50-63.
  39. Naslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson S. Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol (Baltimore, Md: 1950). 2013; 190(6): 2712-2719.

56.Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011; 6(1): 13-22.

  1. Jahangirian H, Lemraski EG, Rafiee MR, Webster TJ. A review of using green chemistry methods for biomaterials in tissue engineering. Int J Nanomedicine. 2018; 13: 5953-5969.
  2. Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003; 5: 293-347.
  3. Diaz GL, GonzalezPI, Millan R, Da SCA, BugalloCA, Campos F. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydr Polym. 2022; 278: 118924.
  4. Karami MH, Abdouss M.A General Evaluation of the Cellular Role in Drug Release: A Clinical Review Study. Clin J Obstet Gynecol. 2024; 7: 042-050.
  5. Zahra N, Abdouss M. Electrospun nanofibers using β-cyclodextrin grafted chitosan macromolecules loaded with indomethacin as an innovative drug delivery system. Int J Biol Macromol.2023; 233: 123518.
  6. Shadabfar M, Ehsani M, Khonakdar HA, Abdouss M. Waterborne conductive carbon paste with an eco-friendly binder. Cellulose. 2023;30: 1759-1772.
  7. Shahriari MH, Hadjizadeh A, Abdouss M. Advances in self-healing hydrogels to repair tissue defects. Polym Bull. 2023;80:1155-1177.
  8. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials. 2015; 8: 7278–7308.
  9. Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S, Sahoo AK, Samanta SK. Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review. Biotechnol Rep. 2020;25:e00427.
  10. Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK. Biological Synthesis of Metallic Nanoparticles: Plants, Animals and Microbial Aspects. Nanotechnol Environ Eng. 2017;2:18.
  11. Pedroso-Santana S, Fleitas-Salazar N. The Use of Capping Agents in the Stabilization and Functionalization of Metallic Nanoparticles for Biomedical Applications. Part Part Syst Charact. 2023;40:2200146.
  12. Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Topics Curr Chem. 2022;380:13.
  13. Karami MH, Pourmadadi M, Abdouss M, Kalaee MR, Moradi O, Rahdar A. Novel chitosan/γ-alumina/ carbon quantum dot hydrogel nanocarrier for targeted drug delivery. Int J Biol Macromol.2023; 251:126280.
  14. Valdivia V, Gimeno-Ferrero R, Leal MP, Paggiaro C, Fernandez-Romero AM, Gonzalez-Rodriguez ML, Fernandez I. Biologically Relevant Micellar Nanocarrier Systems for Drug Encapsulation and Functionalization of Metallic Nanoparticles. Nanomaterials. 2022; 12: 1753.
  15. Pitt JM, Charrier M, Viaud S, André F, Besse B, Chaput N, Zitvogel L. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol. 2014; 193(3): 1006-1011.
  16. Chen X-J, Sanchez-Gaytan BL, Qian Z, Jung Park S. Noble metal nanoparticles in DNA detection and delivery. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2012;4(3):273–290.
  17. Venkatesh N. Metallic nanoparticle: a review. Biomed J Sci Tech Res. 2018; 4: 3765–3775.
  18. Schirrmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int J Oncol. 2019; 54(2):407–419.
  19. Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current Challenges in Cancer Treatment. Clin Ther. 2016; 38(7):1551-66. 
  20. Sun C, Veiseh O, Gunn J, Fang C, Hansen S,Lee D. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small. 2008; 4(3):372–379.
  21. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010; 285(23): 17442-17452.
  22. Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS Pharm Sci Tech. 2014; 15(5):1345–1354.
  23. Mortezaee K, Najafi M, Samadian H, Barabadi H, Azarnezhad A, Ahmadi. Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem Biol Interact. 2019; 312: 108814.
  24. Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 2012; 3(4):457–478.
  25. Navabi H, Croston D, Hobot J, Clayton A, Zitvogel L, Jasani B, Bailey-Wood R, Wilson K, Tabi Z, Mason MD, Adams M. Preparation of human ovarian cancer ascites-derived exosomes for a clinical trial. Blood Cells Mol Dis. 2005; 35(2): 149-152.
  26. Zhang Y, Luo CL, He BC, Zhang JM, Cheng G, Wu XH. Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: A novel vaccine for renal cell carcinoma. Int J Oncol. 2010; 36(1): 133-140.
  27. Bu N, Wu H, Sun B, Zhan G, Zhan S, Zhang R, Zhou L. Exosome-loaded Dendritic Cells Elicit Tumor-Specific CD8+ Cytotoxic T Cells in Patients with Glioma. J Neurooncol. 2011; 104(3): 659-667.
  28. Navya P N, Kaphle A, Srinivas S P, Bhargava SK, Rotello VC, Daima H K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6: 23.
  29. Prieto M, Arenal R, Henrard L, Gomez L, Sebastian V,Arruebo M . Morphological tunability of the plasmonic response: from hollow gold nanoparticles to gold nanorings. J Phys Chem C. 2014;118(49): 28804–28811
  30. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6): 673–692.
  31. Karami M H, Abdouss M . Assessing Particle Size and Surface Charge in Drug Carrier Nanoparticles for Enhanced Cancer Treatment: A Comprehensive Review Utilizing DLS and Zeta Potential Characterization. PSPRJ.2024; 5(3): 000615.
  32. Jin Y, Li Y, Ma X, Zha Z, Shi L, Tian J, Dai Z. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomater. 2014;35(22):5795–5804.
  33. Zelasko-Leon DC, Fuentes CM, Messersmith PB. MUC1-targeted cancer cell photothermal ablation using bioinspired gold nanorods. PLoS One. 2015;10(7):e0128756.
  34. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10(6):787–800.
  35. Karami MH, Abdouss M, Cutting-edge tumor nanotherapy: Advancements in 5-fluorouracil Drug-loaded chitosan nanoparticles, Inorg Chem Commun.2024:112430.
  36. Torres TE, Lima E, Calatayud MP, Sanz B, Ibarra A, Fernández-Pacheco R, Mayoral A, Marquina C, Ibarra MR, Goya GF. The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Sci Rep. 2019; 9(1):1–11.
  37. Prasad N, Rathinasamy K, Panda D, Bahadur D. Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-Mn x Fe 2–x O 3 synthesized by a single step process. J Mater Chem. 2007;17(48):5042–5051.
  38. Karami MH, Abdouss M, Karami M , Evaluation of in vitro and ex vivo models for studying the effectiveness of vaginal drug systems in controlling microbe infections: A systematic review. Clin J Obst Gynecol.2023; 6: 201-215.
  39. Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater. 1999;194(1–3):185–196.
  40. Hilger I, Andra W, Hergt R, Hiergeist R, Schubert H, Kaiser WA. Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology. 2001;218(2):570–575.

97.Hilger I, Hiergeist R, Hergt R, Winnefeld K, Schubert H, Kaiser WA. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Invest Radiol. 2002;37(10):580–586.

  1. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, Von Deimling A, Waldoefner N, Felix R. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007;81(1):53–60.
  2. DeNardo SJ, DeNardo GL, Natarajan A, Miers LA, Foreman AR, Gruettner C, Adamson GN, Ivkov R. Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF–induced thermoablative therapy for human breast cancer in mice. J Nucl Med. 2007;48(3):437–444.
  3. Karami MH, Abdouss M, Recent advances of carbon quantum dots in tumor imaging. Nanomed J.2024; 11(1): 13-35.
  4. Majeed J, Pradhan L, Ningthoujam RS, Vatsa RK, Bahadur D, Tyagi AK. Enhanced specific absorption rate in silanol functionalized Fe3O4 core–shell nanoparticles: Study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells. Colloids Surf B Biointerfaces. 2014;122:396–403.
  5. Rana S, Jadhav NV, Barick K, Pandey B, Hassan P. Polyaniline shell crosslinked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells. Dalton Trans. 2014;43(32):12263–12271.
  6. Makridis A, Topouridou K, Tziomaki M, Sakellari D, Simeonidis K, Angelakeris M, Yavropoulou MP, Yovos JG, Kalogirou O. In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. J Mater Chem B. 2014;2(47):8390–8398.
  7. Karami MH, Abdouss M, Maleki B, The state of the art metal nanoparticles in drug delivery systems: A comprehensive review. Nanomed J.2024; Articles in press.
  8. Noor S, Al-Shamari A. High photocatalytic performance of ZnO and ZnO/CdS nanostructures against reactive blue 4 dye. J Med Pharm Chem Res. 2023;5(9):776-793.
  9. Ibrahim Arif A. Biosynthesis of copper oxide nanoparticles using Aspergillus niger extract and their antibacterial and antioxidant activities. J Med Pharm Chem Res. 2023;5(7):598-608.
  10. Moayeripour SS, Behzadi R. Experimental investigation of the effect of titanium nanoparticles on the properties of hydrophobic self-cleaning film. J Med Pharm Chem Res. 2023;5(4):303-316.
  11. Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A,M. Darroudi M. Eco-friendly biosynthesis of nickel oxide nanoparticles mediated by okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties. J Clust Sci. 2019;30:1425-1434.
  12. Karami MH, Abdouss M, Aghabarari B. Analyzing the Cytotoxicity of Chitosan Nanovehicles in Breast Tumor Therapy: A Critical Review of Key Insights. JWHG, 2024;3(5):1-9.
  13. Ludwig N, Yerneni SS, Razzo BM, Whiteside TL. Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells. Mol Cancer Res. 2018; 16(11):1798-1808.
  14. Whiteside TL. The role of tumor-derived exosomes in epithelial mesenchymal transition (EMT). Transl Cancer Res. 2017;6(1):S90-92.
  15. Chen T, Guo J, Yang M, Zhu X, Cao X. Chemokinecontaining exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. J Immunol. 2011; 186(4): 2219-2228.
  1. Damo M, Wilson DS, Simeoni E, Hubbell JA. TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci Rep. 2015; 5: 17622.
  2. Li C, Zhang J, Zu YJ, Nie SF, Cao J, Wang Q. Biocompatible and biodegradable nanoparticles for enhancement of anticancer activities of phytochemicals. Chin J Nat Med. 2015; 13: 641-652
  3. Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 2003;63(15):4331- 4337.
  4. Santos JC, Lima NdS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep. 2018;8(1): 1-11.
  5. Aryani A, Denecke B. Exosomes as a nanodelivery system: a key to the future of neuromedicine?. Mol Neurobiol. 2016; 53: 818-834.
  6. Rani S, Ritter T. The exosome-a naturally secreted nanoparticle and its application to wound healing. Adv Mater. 2015; 28(27): 5542-5552.
  7. Karami MH, Abdouss M. molybdenum disulfide as great potential in biological applications: a detailed review, IJMRS @ PubScholar Journal. 2024; 1(6) : 36-39.
  8. Hood JL. Post isolation modification of exosomes for nanomedicine applications. Int J Nanomedicine. 2016; 11(13):1745-1756.
  9. Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol. 2014; 306(7): 621-633.
  10. Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Citation Rep. 2015; 220:727-737.
  11. Taylor DD, Gercel-Taylor C, editors. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol. 2011:2533- 2550.
  12. Hood JL. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine. 2016; 11(13): 1745-1756.
  13. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011; 29: 341-345.
  14. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30(1):22-51.
  15. Stremersch S, De Smedt SC, Raemdonck K. Therapeutic and diagnostic applications of extracellular vesicles. J Citation Rep. 2016;244:167-183.
  16. Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, Lv S, Li W. Targeted exosome‐encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci. 2019; 110(10): 3173-3182
  17. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2020;70(4):209- 249.
  18. Harbeck N, Gnant M. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2017; 389(10074):1134-1150.
  19. Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Vigano L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A. Paclitaxel Is Incorporated by Mesenchymal Stromal Cells and Released in Exosomes That Inhibit invitro Tumor Growth. A New Approach for Drug Delivery. 2014; 192: 262-270
  20. Pereira PM, Ragupathi A, Shmuel S, Mandleywala K, Viola NT, Lewis JS. HER2-targeted PET imaging and therapy of hyaluronan-masked HER2-overexpressing breast cancer. Mol Pharm. 2019;17(1):327-337.
  21. Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288-300.
  22. Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, Gupta R. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol. 2016; 101(1): 12-21.
  23. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013; 335(1): 201-204.
  24. Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013; 21(1): 185-191.
  25. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014; 35(7): 2383-2390.
  26. Slack FJ. Regulatory RNAs and the demise of ’junk’ DNA. BMC. 2006;7(9):328-330.
  27. Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179(5):1033-1055.
  28. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5-18.
  29. Hood JL. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine. 2016; 11(13): 1745-1756.
  30. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011; 29:341-345.
  1. Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, Lv S, Li W. Targeted exosome‐encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci. 2019; 110(10): 3173-3182.
  2. Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Vigano L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A. Paclitaxel Is Incorporated by Mesenchymal Stromal Cells and Released in Exosomes That Inhibit invitro Tumor Growth. A New Approach for Drug Delivery. 2014; 192: 262-270.
  3. Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, Gupta R. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp. Mol. Pathol. 2016; 101(1): 12-21.
  4. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013; 335(1): 201-204.
  5. Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013; 21(1): 185-191.
  6. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014; 35(7): 2383-2390.
  7. Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, Liu Y. Exosomes derived from miR-122-modified adipose tissuederived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015; 8: 122.
  8. O’Brien K, Lowry MC, Corcoran C, Martinez VG, Daly M, Rani S, Gallagher WM, Radomski MW, MacLeod RA, O’Driscoll L. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget. 2015; 6(32): 32774-32789.