In-vitro Anti-cancer and Antioxidant Activity of Biogenically Synthesized Co3O4@NiO Core-shell Nanostructures

Document Type : Research Paper

Authors

1 Applied Chemistry, Applied and Natural Science, Adama Science and Technology University, Adama, Ethiopia

2 Department of Applied Sciences, Papua New Guinea University of Technology, Lae, Morobe Province, 411, Papua New Guinea, India

3 Research Scholar, School of Chemical Sciences, Indian Institute of Technology Mandi, (IIT Mandi) Himachal Pradesh-175005, India

Abstract

The anticancer and antioxidant activities of Datura stramonium plant leaf extract mediated Co3O4 and NiO nanoparticles, as well as Co3O4@NiO core-shell nanostructures were investigated. The Co3O4@NiO CSNs were synthesized with core-shell concentration ratios of 2:1, 1:1, and 2:3. The Co3O4@NiO CSNs and their parent nanoparticles were characterized by using advanced techniques. The band gap energy of Co3O4 (11) and NiO (11) NPs were found to be 3.06 eV and 3.45 eV, whereas, the band gap energies of the Co3O4 core and NiO shell were 3.68 and 4.52 eV, respectively. Similarly, the average crystalline size of Co3O4 (11) and NiO (11) NPs, as well as Co3O4@NiO (11) CSNs were found to be 18, 12, and 13 nm, respectively. The spherical shape of Co3O4, NiO NPs, and the spherical rod of Co3O4@NiO CSNs were investigated from SEM images. The particle sizes of cubic Co3O4, NiO NPs, and Co3O4@NiO CSNs obtained from TEM images were 15.55, 8.184, and 16.99 nm, respectively. The polycrystalline nature of CN was revealed from SAED analysis The percentage inhibition of Co3O4@NiO CSNs against MCF-7 cancer cells at 100, 200, 400, and 800 μg/mL were found to be 52.41, 68.21, 74.11, and 81.38%, respectively. The IC50 of Co3O4@NiO CSNs and epirubicin were found to be 21.25 and 18.01 μg/mL, respectively. The findings show that green synthesized Co3O4@NiO CSNs possess potential anticancer activities nearly comparable with standard drugs with less toxicity against normal cells.

Keywords


1.     Jha D, Thiruveedula PK, Pathak R, Kumar B, Gautam HK, Agnihotri S, Sharma AK, Kumar P. Multifunctional biosynthesized silver nanoparticles exhibiting excellent antimicrobial potential against multi-drug resistant microbes along with remarkable anticancerous properties. Materials Science and Engineering: C. 2017;80:659-69.
2.     Al-Enazi NM, Alsamhary K, Kha M, Ameen F. In vitro anticancer and antibacterial performance of biosynthesized Ag and Ce co-doped ZnO NPs. Bioprocess Biosyst Eng [Internet]. 2023;46(1):89–103. 
3.     Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. 
4.     Gwon K, Park JD, Lee S, Yu JS, Lee DN. Biocompatible Core–Shell-Structured Si-Based NiO Nanoflowers and Their Anticancer Activity. Pharmaceutics. 2022;14(2):268. 
5.     Osman Y, Elsharkawy T, Hashim TM, Alratroot JA, Aljindan F, Almulla L, et al. Study of Single Nucleotide Polymorphisms Associated with Breast Cancer Patients among Arab Ancestries. 2022;2022(1):2442109.
6.     Gomathi AC, Xavier Rajarathinam SR, Mohammed Sadiq A, Rajeshkumar S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J Drug Deliv Sci Technol [Internet]. 2020;55:101376. 
7.     Abdelsattar AS, Kamel AG, Hussein AH, Azzam M, Makky S, Rezk N, et al. The Promising Antibacterial and Anticancer Activity of Green Synthesized Zinc Nanoparticles in Combination with Silver and Gold Nanoparticles. J Inorg Organomet Polym Mater [Internet]. 2023;33(7):1868-81.
8.     Hussain MM, Rahman MM, Asiri AM. Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. J Environ Sci (China) [Internet]. 2017;53(September 2018):27–38. 
9.     Sharifi M, Sharifi M, Jafari S, Hasan A, Hasan A, Paray BA, et al. Antimetastatic Activity of Lactoferrin-Coated Mesoporous Maghemite Nanoparticles in Breast Cancer Enabled by Combination Therapy. ACS Biomater Sci Eng. 2020;6(6):3574–3584. 
10.     Abdel-Fattah WI, W Ali G. On the anti-cancer activities of silver nanoparticles. J Appl Biotechnol Bioeng. 2018;5(1):43-46. 
11.     George BP, Rajendran NK, Houreld NN, Abrahamse H. Rubus Capped Zinc Oxide Nanoparticles Induce Apoptosis in MCF-7 Breast Cancer Cells. Molecules. 2022;27(20):6862. 
12.     Bahreyni A, Mohamud Y, Luo H. Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology [Internet]. 2020;18(1):1–14. 
13.     Tagde P, Najda A, Nagpal K, Kulkarni GT, Shah M, Ullah O, et al. Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. Int J Mol Sci. 2022;23(5):2856. 
14.     Huang Y, Du Z, Bao G, Fang G, Cappadona M, McClements L, et al. Smart Drug-Delivery System of Upconversion Nanoparticles Coated with Mesoporous Silica for Controlled Release. Pharmaceutics. 2023;15(1):89. 
15.     D’Souza JN, Prabhu A, Nagaraja GK, Navada K. M, Kouser S, Manasa DJ. Unravelling the human triple negative breast cancer suppressive activity of biocompatible zinc oxide nanostructures influenced by Vateria indica (L.) fruit phytochemicals. Mater Sci Eng C. 2021;122(January). 
16.     Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, A RA, et al. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct. 2020;128107. 
17.     Ajarem JS, Maodaa SN, Allam AA, Taher MM, Khalaf M. Benign Synthesis of Cobalt Oxide Nanoparticles Containing Red Algae Extract: Antioxidant, Antimicrobial, Anticancer, and Anticoagulant Activity. J Clust Sci [Internet]. 2022;33(2):717–728. 
18.     Alarifi S, Ali D, Alkahtani S, Alhader MS. Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res. 2014;159(1–3):416–424. 
19.     Abu‑Serie MM, Eltarahony M. Novel nanoformulation of disulfiram with bacterially synthesized copper oxide nanoparticles for augmenting anticancer activity: an in vitro study. Cancer Nanotechnol [Internet]. 2021;12(1):1–17. 
20.     Kganyago P, Mahlaule-Glory LM, Mathipa MM, Ntsendwana B, Mketo N, Mbita Z, et al. Synthesis of NiO nanoparticles via a green route using Monsonia burkeana: The physical and biological properties. J Photochem Photobiol B Biol. 2018;182:18–26. 
21.     Lee KX, Shameli K, Nagao Y, Yew YP, Teow SY, Moeini H. Potential use of gold-silver core-shell nanoparticles derived from Garcinia mangostana peel for anticancer compound, protocatechuic acid delivery. Front Mol Biosci. 2022;9(October):1–15. 
22.     Orshiso TA, Zereffa EA, Murthy HCA, Demissie TB, Pardeshi O, Avhad LS, et al. Biosynthesis of Artemisia abyssinica Leaf Extract-Mediated Bimetallic ZnO-CuO Nanoparticles: Antioxidant, Anticancer, and Molecular Docking Studies. ACS Omega. 2023;8(44):41039–41053. 
23.     Alshehri AA, Malik MA. Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. J Mater Sci Mater Electron [Internet]. 2019;30(17):16156–16173. 
24.     Wahab R, Siddiqui MA, Ahmad J, Saquib Q, Al-Khedhairy AA. Cytotoxic and molecular assessment against breast (MCF-7) cancer cells with cobalt oxide nanoballs. J King Saud Univ - Sci [Internet]. 2021;33(5):101467. 
25.     Shawki MM, Sadieque A El, Elabd S, Moustafa ME. Synergetic Effect of Tumor Treating Fields and Zinc Oxide Nanoparticles on Cell Apoptosis and Genotoxicity of Three Different Human Cancer Cell Lines. Molecules. 2022;27(14). 
26.     Sundram S, Baskar S, Subramanian A. Green synthesized nickel doped cobalt ferrite nanoparticles exhibit antibacterial activity and induce reactive oxygen species mediated apoptosis in MCF-7 breast cancer cells through inhibition of PI3K/Akt/mTOR pathway. Environ Toxicol. 2022;37(12):2877–2888. 
27.     Mahendra C, Chandra MN, Murali M, Abhilash MR, Singh SB, Satish S, et al. Phyto-fabricated ZnO nanoparticles from Canthium dicoccum (L.) for antimicrobial, anti-tuberculosis and antioxidant activity. Process Biochem. 2020;89:220–226. 
28.     Hemanth Kumar NK, Murali M, Satish A, Brijesh Singh S, Gowtham HG, Mahesh HM, et al. Bioactive and Biocompatible Nature of Green Synthesized Zinc Oxide Nanoparticles from Simarouba glauca DC.: An Endemic Plant to Western Ghats, India. J Clust Sci. 2020;31(2):523–534. 
29.     Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M. Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab J Chem. 2020;13(1):606–619. 
30.     Ramalingam V, Harshavardhan M, Dinesh Kumar S, Malathi devi S. Wet chemical mediated hematite α-Fe2O3 nanoparticles synthesis: Preparation, characterization and anticancer activity against human metastatic ovarian cancer. J Alloys Compd. 2020;834:155118. 
31.     Zhang Y, Mahdavi B, Mohammadhosseini M, Rezaei-Seresht E, Paydarfard S, Qorbani M, et al. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arab J Chem [Internet]. 2021;14(5):103105. 
32.     Alqarni LS, Alghamdi MD, Alshahrani AA, Nassar AM. Green Nanotechnology: Recent Research on Bioresource-Based Nanoparticle Synthesis and Applications. J Chem. 2022;2022:4030999. 
33.     Paul D, Mangla S, Neogi S. Antibacterial study of CuO-NiO-ZnO trimetallic oxide nanoparticle. Mater Lett [Internet]. 2020;271:127740. 
34.     Zhu CL, Chou SW, He SF, Liao WN, Chen CC. Synthesis of core/shell metal oxide/polyaniline nanocomposites and hollow polyaniline capsules. Nanotechnology. 2007;18(27):8–14. 
35.     Yang Q, Lu Z, Li T, Sun X, Liu J. Hierarchical construction of core-shell metal oxide nanoarrays with ultrahigh areal capacitance. Nano Energy [Internet]. 2014;7:170–8. 
36.     Sarani M, Hamidian K, Barani M, Adeli-Sardou M, Khonakdar HA. α-Fe2O3@Ag and Fe3O4@Ag Core-Shell Nanoparticles: Green Synthesis, Magnetic Properties and Cytotoxic Performance. ChemistryOpen. 2023;202200250:1–10. 
37.     Tadesse G, Ananda Murthy HC, Ravikumar CR, Naveen Kumar T, Teshome L, Desalegn T. In Situ Green Synthesis of Co3O4@ZnO Core-Shell Nanoparticles Using Datura stramonium Leaf Extract: Antibacterial and Antioxidant Studies. Bioinorg Chem Appl. 2023;2023(1):5019838. 
38.     Tamanis E, Sledevskis E, Ogurcovs A, Gerbreders V, Paskevics V. Synthesis of Core/Shell CuO-Zno Nanoparticles and Their Second-Harmonic Generation Performance. Latv J Phys Tech Sci. 2015;52(5):41–6. 
39.     Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019;2019(1):6175804.
40.     Kelele KG, Murthy HCA, Balachandran R, Tadesse A, Nikodimos Y, Tufa LT, et al. Synthesis and characterization of Mo-doped barium strontium titanate nanopowder via slow injection sol–gel processing. Chem Pap [Internet]. 2023;77(1):129-139.41. 
41.    Yin X, Zhi C, Sun W, Lv LP, Wang Y. Multilayer NiO@Co3O4@graphene quantum dots hollow spheres for high-performance lithium-ion batteries and supercapacitors. J Mater Chem A. 2019;7(13):7800–7814. 
42.     Dinga E, Mthiyane DMN, Marume U, Botha TL, Horn S, Pieters R, et al. Biosynthesis of ZnO nanoparticles using Melia azedarach seed extract: Evaluation of the cytotoxic and antimicrobial potency. OpenNano [Internet]. 2022;8(June):100068. 
43.     Alharbi NS, Alsubhi NS, Felimban AI. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J Radiat Res Appl Sci [Internet]. 2022;15(3):109–124. 
44.     Srivastava R. The Medicinal Significance of Datura stramonium: A Review. Biomed J Sci Tech Res. 2020;29(2):22223–22226. 
45.     Sharma M, Dhaliwal I, Rana K, Delta AK, Kaushik P. Phytochemistry, pharmacology, and toxicology of datura species—a review. Antioxidants. 2021;10(8):1–12. 
46.     Das S, Kumar P, Basu SP. Phytoconstituents and Therapeutic Potentials of Datura Stramonium Linn. J Drug Deliv Ther. 2012;2(3):4–7. 
47.     Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, et al. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells, Nanomedicine Biotechnol [Internet]. 2018;46(4):838–852. 
48.     Anjum S, Nawaz K, Ahmad B, Hano C, Abbasi BH. Green synthesis of biocompatible core-shell (Au-Ag) and hybrid (Au-ZnO and Ag-ZnO) bimetallic nanoparticles and evaluation of their potential antibacterial, antidiabetic, antiglycation and anticancer activities. RSC Adv. 2022;12(37):23845–23859. 
49.     Bhardwaj K, Kumar S, Ojha S. Antioxidant activity and FT-IR analysis of Datura innoxia and Datura metel leaf and seed methanolic extracts. African J Tradit Complement Altern Med. 2016;13(5):7–16. 
50.     Bekele ET, Sintayehu YD, Murthy HCA, Shume MS, Ayanie GT, Turunesh DJ, et al. Synthesis of ZnO nanoparticles mediated by natural products of Acanthus sennii leaf extract for electrochemical sensing and photocatalytic applications: a comparative study of volume ratios. Chem Pap [Internet]. 2022;76(9):5967–5983. 
51.     Hussain S, Ali Muazzam M, Ahmed M, Ahmad M, Mustafa Z, Murtaza S, et al. Green synthesis of nickel oxide nanoparticles using Acacia nilotica leaf extracts and investigation of their electrochemical and biological properties. J Taibah Univ Sci [Internet]. 2023;17(1). 
52.     Zhao Y, Li K, Sheng B, Chen F, Song Y. Nitrogen-doped core-shell mesoporous carbonaceous nanospheres for effective removal of fluorine in capacitive deionization. Water (Switzerland). 2023;15(3):608. 
53.     Sanad MF, Meneses-Brassea BP, Blazer DS, Pourmiri S, Hadjipanayis GC, El-Gendy AA. Superparamagnetic fe/au nanoparticles and their feasibility for magnetic hyperthermia. Appl Sci. 2021;11(14). 
54.     Selvanathan V, Shahinuzzaman M, Selvanathan S, Sarkar DK, Algethami N, Alkhammash HI, et al. Phytochemical-assisted green synthesis of nickel oxide nanoparticles for application as electrocatalysts in oxygen evolution reaction. Catalysts. 2021;11(12):1523.
55.     Vennela AB, Mangalaraj D, Muthukumarasamy N, Agilan S, Hemalatha K V. Structural and optical properties of Co 3 O 4 nanoparticles prepared by sol-gel technique for photocatalytic application. Int J Electrochem Sci. 2019;14(4):3535–52. 
56.     Aldeen TS, Ahmed Mohamed HE, Maaza M. ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. J Phys Chem Solids [Internet]. 2022;160:110313. 
57.     Kim JC, Kim KJ, Lee SM. Preparation and characterization of core-shell structure hard carbon/si-carbon composites with multiple shell structures as anode materials for lithium-ion batteries. Energies. 2021;14(8):2104. 
58.     Nzilu DM, Madivoli ES, Makhanu DS, Wanakai SI, Kiprono GK, Kareru PG. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Sci Rep [Internet]. 2023;13(1):1–18. 
59.     Li C, Wei A, Liu J, Xiao Z, Liu Z, Zhao Y. Synthesis of CoS@NiS core/shell nanoarrays as efficient counter electrode for dye-sensitized solar cells. J Mater Sci Mater Electron. 2017;28(6):4904–4907. 
60.     Cai T, Fang G, Tian X, Yin J, Chen C, Ge C. Optimization for Antibacterial Efficacy of Noble Metal-Based Core-Shell Nanostructures and Effect of Nature Organic Matter. 2019;13(11):12694-12702.
61.     Liu S, Wei K, Cheng F, Li Y, Xue M. Ammonia Sensor Based on Co2+/SCN− Modified Core-Shell MCM-41 for Rapid Naked-Eye Colorimetric Detection. Chemosensors. 2023;11(6):336. 
62.     Rahman F, Majed Patwary MA, Bakar Siddique MA, Bashar MS, Haque MA, Akter B, et al. Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: characterization, antimicrobial, antioxidant and photocatalytic activity. R Soc Open Sci. 2022;9(11):220858. 
63.     Ghasemian Dazmiri M, Alinezhad H, Hossaini Z, Bekhradnia AR. Green synthesis of Fe3O4/ZnO magnetic core-shell nanoparticles by Petasites hybridus rhizome water extract and their application for the synthesis of pyran derivatives: Investigation of antioxidant and antimicrobial activity. Appl Organomet Chem. 2020;34(9):1–13. 
64.     Raeisi M, Alijani HQ, Peydayesh M, Khatami M, Bagheri Baravati F, Borhani F, et al. Magnetic cobalt oxide nanosheets: green synthesis and in vitro cytotoxicity. Bioprocess Biosyst Eng. 2021;44(7):1423–1432. 
65.     Wingett D, Louka P, Anders CB, Zhang J, Punnoose A. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity. Nanotechnol Sci Appl. 2016;9:29–45. 
66.     Wongrakpanich A, Joiner MA, Anderson ME, Salem AK. Mitochondria-targeting particles. 2014;9:2531–2543. 
67.     Iqbal J, Abbasi BA, Mahmood T, Hameed S, Munir A, Kanwal S. Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl Organomet Chem. 2019;33(8):e4950. 
68.     Ajarem JS, Maodaa SN, Allam AA, Taher MM, Khalaf M. Benign Synthesis of Cobalt Oxide Nanoparticles Containing Red Algae Extract: Antioxidant, Antimicrobial, Anticancer, and Anticoagulant Activity. J Clust Sci. 2021;1-2.