A review of novel nanoformulations for dry eye disease and treat ocular surface inflammation

Document Type : Review Paper

Authors

1 Isfahan Eye Research Center, Isfahan University of Medical Sciences, Iran

2 KIMS Hospital, Oman

3 Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 Rehabilitation Research Center, Department of Optometry, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran

5 Ophthalmology Department, Buraimi Hospital, Buraimi, Oman

6 Department of Dentistry, Al-Noor University College, Nineveh, Iraq

7 College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, Iraq

8 Laboratory Department, Buraimi Hospital, Buraimi, Oman

Abstract

Dry eye disease (DED) is a multifactorial condition frequently encountered in ocular disorders. DED not only causes ocular discomfort but also leads to damage to the cornea and conjunctiva. The topical route of drug administration is commonly used for treating ophthalmic diseases; however, its major limitation is the low ocular drug bioavailability, which typically amounts to less than 5%. This limitation arises due to the multiple permeation barriers between the tear film and the inner layers of the cornea, which hinder the achievement of therapeutic drug concentrations in ocular tissues. Researchers have significantly advanced in developing practical and safe drug delivery systems to address these challenges. These innovations have improved the penetration of medications through ocular barriers, enabled targeted delivery to specific cells and tissues, and enhanced the retention time, solubility of hydrophobic drugs in aqueous solutions, and overall bioavailability. Encapsulating drugs within nanoparticles has protected against degradation, further improving therapeutic efficacy. This review aims to explore various nanoformulations (e.g., liposomes, niosomes, suspensions, and emulsions) designed to enhance the ocular bioavailability of topically administered medications. A comprehensive DED inflammation overview focuses on the disease's etiology, clinical manifestations, and therapeutic approaches. It is anticipated that the development of advanced medication delivery systems will lead to improved management of DED shortly. The advancements discussed here may pave the way for creating novel, highly effective, and essential ocular nanosystems.

Keywords


  1. Bustamante-Arias A, Ruiz Lozano RE, Rodriguez-Garcia A. Dry eye disease, a prominent manifestation of systemic autoimmune disorders. Eur J Ophthalmol. 2022;32 (6):3142-3162.
  2. Stapleton F, Alves M, Bunya VY, Jalbert I, Lekhanont K, Malet F, Na K-S, Schaumberg D, Uchino M, Vehof J. Tfos dews ii epidemiology report. Ocul Surf. 2017;15 (3):334-365.
  3. Wróbel-Dudzińska D, Osial N, Stępień PW, Gorecka A, Żarnowski T. Prevalence of dry eye symptoms and associated risk factors among university students in Poland. Int J Environ Res Public Health. 2023;20 (2):1313.
  4. Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130 (1):90-100.
  5. Deo N, Nagrale P. Dry Eye disease: an overview of its risk factors, diagnosis, and prevalence by age, sex, and race. Cureus. 2024;16 (2).
  6. Al-Mohtaseb Z, Schachter S, Shen Lee B, Garlich J, Trattler W. The relationship between dry eye disease and digital screen use. Clin Ophthalmol. 2021:3811-3820.
  7. Wang T-Z, Liu X-X, Wang S-Y, Liu Y, Pan X-Y, Wang J-J, Nan K-H. Engineering advanced drug delivery systems for dry eye: a review. Bioengineering. 2022;10 (1):53.
  8. Schaumberg DA, Dana R, Buring JE, Sullivan DA. Prevalence of dry eye disease among US men: estimates from the Physicians' Health Studies. Arch Ophthalmol. 2009;127 (6):763-768.
  9. Lee J-H, Lee W, Yoon J-H, Seok H, Roh J, Won J-U. Relationship between symptoms of dry eye syndrome and occupational characteristics: the Korean National Health and Nutrition Examination Survey 2010–2012. BMC Ophthalmol. 2015;15:1-9.
  10. Uchino M, Nishiwaki Y, Michikawa T, Shirakawa K, Kuwahara E, Yamada M, Dogru M, Schaumberg DA, Kawakita T, Takebayashi T. Prevalence and risk factors of dry eye disease in Japan: Koumi study. Ophthalmology. 2011;118 (12):2361-2367.
  11. Maychuk DY, Anisimova S, Kapkova S, Kachanov A, Korotkikh S, Seleznev A, Sakhnov S, Leonova E, Krylov S. Prevalence and severity of dry eye in candidates for laser in situ keratomileusis for myopia in Russia. J Cataract Refract Surg. 2016;42 (3):427-434.
  12. Hessen M, Akpek EK. Dry eye: an inflammatory ocular disease. J Ophthalmic Vis Res. 2014;9 (2):240.
  13. Bachu RD, Chowdhury P, Al-Saedi ZH, Karla PK, Boddu SH. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10 (1):28.
  14. Santana CP, Matter BA, Patil MA, Silva-Cunha A, Kompella UB. Corneal Permeability and Uptake of Twenty-Five Drugs: Species Comparison and Quantitative Structure–Permeability Relationships. Pharmaceutics. 2023;15 (6):1646.
  15. Ibrahim MM, Maria DN, Wang X, Simpson RN, Hollingsworth T, Jablonski MM. Enhanced corneal penetration of a poorly permeable drug using bioadhesive multiple microemulsion technology. Pharmaceutics. 2020;12 (8):704.
  16. Loescher M, Seiz C, Hurst J, Schnichels S. Topical drug delivery to the posterior segment of the eye. Pharmaceutics. 2022;14 (1):134.
  17. Kashima T, Itakura H, Akiyama H, Kishi S. Rebamipide ophthalmic suspension for the treatment of dry eye syndrome: a critical appraisal. Clin Ophthalmol. 2014:1003-1010.
  18. Shen J, Gan L, Zhu C, Zhang X, Dong Y, Jiang M, Zhu J, Gan Y. Novel NSAIDs ophthalmic formulation: flurbiprofen axetil emulsion with low irritancy and improved anti-inflammation effect. Int J Pharm. 2011;412 (1-2):115-122.
  19. Alotaibi TA, Iyire A, Assaf S, Dahmash EZ. Development and characterization of niosomes loaded mucoadhesive biodegradable ocular inserts for extended release of pilocarpine HCl. Future J Pharm Sci. 2024;10 (1):22.
  20. Lu J, Lu F, Peng Z, Zhang Z, Jiang W, Meng X, Yi X, Chen T, Fei Z, Wang Y. Clodronate liposome-mediated macrophage depletion ameliorates iron overload-induced dry eye disease. Exp Eye Res. 2025;251:110204.
  21. Landucci E, Mazzantini C, Calvani M, Pellegrini-Giampietro DE, Bergonzi MC. Evaluation of conventional and hyaluronic acid-coated thymoquinone liposomes in an in vitro model of dry eye. Pharmaceutics. 2023;15 (2):578.
  22. Chandel A, Kandav G. Insights into ocular therapeutics: a comprehensive review of anatomy, barriers, diseases and nanoscale formulations for targeted drug delivery. J Drug Deliv Sci Technol. 2024:105785.
  23. Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnol. 2023;21 (1):232.
  24. Messmer EM. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int. 2015;112 (5):71.
  25. Ziaragkali S, Kotsalidou A, Trakos N. Dry eye disease in routine rheumatology practice. Mediterr J Rheumatol. 2018;29 (3):127-139.
  26. Phadatare SP, Momin M, Nighojkar P, Askarkar S, Singh KK. A comprehensive review on dry eye disease: diagnosis, medical management, recent developments, and future challenges. Adv Pharmaceutics. 2015;2015 (1):704946.
  27. Tsubota K, Yokoi N, Shimazaki J, Watanabe H, Dogru M, Yamada M, Kinoshita S, Kim H-M, Tchah H-W, Hyon JY. New perspectives on dry eye definition and diagnosis: a consensus report by the Asia Dry Eye Society. Ocul Surf. 2017;15 (1):65-76.
  28. Wu M, Sun C, Shi Q, Luo Y, Wang Z, Wang J, Qin Y, Cui W, Yan C, Dai H. Dry eye disease caused by viral infection: Past, present and future. Virulence. 2024;15 (1):2289779.
  29. Gaballa SA, Kompella UB, Elgarhy O, Alqahtani AM, Pierscionek B, Alany RG, Abdelkader H. Corticosteroids in ophthalmology: Drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv Transl Res. 2021;11:866-893.
  30. Fung AT, Tran T, Lim LL, Samarawickrama C, Arnold J, Gillies M, Catt C, Mitchell L, Symons A, Buttery R. Local delivery of corticosteroids in clinical ophthalmology: A review. Clin Exp Ophthalmol. 2020;48 (3):366-401.
  31. Gregory II AC, Kempen JH, Daniel E, Kaçmaz RO, Foster CS, Jabs DA, Levy-Clarke GA, Nussenblatt RB, Rosenbaum JT, Suhler EB. Risk factors for loss of visual acuity among patients with uveitis associated with juvenile idiopathic arthritis: the Systemic Immunosuppressive Therapy for Eye Diseases Study. Ophthalmology. 2013;120 (1):186-192.
  32. Hoffman J. Overview of antiviral medications used in ophthalmology. Community Eye Health. 2020;33 (108):85.
  33. Day RO, Graham GG. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ. 2013;346.
  34. Davis A, Robson J. The dangers of NSAIDs: look both ways. Br J Gen Pract. 2016:172-173.
  35. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:1-33.
  36. Ahuja M, Dhake AS, Sharma SK, Majumdar DK. Topical ocular delivery of NSAIDs. AAPS J. 2008;10:229-241.
  37. Nosch DS, Joos RE, Job M. Prospective randomized study to evaluate the efficacy and tolerability of Ectoin® containing Eye Spray (EES09) and comparison to the liposomal Eye Spray Tears Again®(TA) in the treatment of dry eye disease. Contact Lens Anterior Eye. 2021;44 (3):101318.
  38. Molokhia SA, Thomas SC, Garff KJ, Mandell KJ, Wirostko BM. Anterior eye segment drug delivery systems: current treatments and future challenges. J Ocul Pharmacol Ther. 2013;29 (2):92-105.
  39. De Paiva CS, Pflugfelder SC, Ng SM, Akpek EK. Topical cyclosporine A therapy for dry eye syndrome. Cochrane Database Syst Rev. 2019(9).
  40. Lou Q, Pan L, Xiang S, Li Y, Jin J, Tan J, Huang B, Nan K, Lin S. Suppression of NLRP3/Caspase-1/GSDMD Mediated Corneal Epithelium Pyroptosis Using Melatonin-Loaded Liposomes to Inhibit Benzalkonium Chloride-Induced Dry Eye Disease. Int J Nanomedicine. 2023:2447-2463.
  41. Li S, Lu Z, Huang Y, Wang Y, Jin Q, Shentu X, Ye J, Ji J, Yao K, Han H. Anti‐oxidative and anti‐inflammatory micelles: break the dry eye vicious cycle. Adv Sci. 2022;9 (17):2200435.
  42. Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19 (8):477-489.
  43. Paik S, Kim JK, Silwal P, Sasakawa C, Jo E-K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18 (5):1141-1160.
  44. Tang T, Lang X, Xu C, Wang X, Gong T, Yang Y, Cui J, Bai L, Wang J, Jiang W. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat Commun. 2017;8 (1):202.
  45. Domingo-Fernández R, Coll RC, Kearney J, Breit S, O'Neill LA. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J Biol Chem. 2017;292 (29):12077-12087.
  46. Rouen PA, White ML. Dry eye disease: prevalence, assessment, and management. Home Healthcare Now. 2018;36 (2):74-83.
  47. Wei J, Mu J, Tang Y, Qin D, Duan J, Wu A. Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy. J Nanobiotechnol. 2023;21 (1):282.
  48. Newberry D. The history of nanoscience and nanotechnology. Nanotechnol Past Present. 2020:13-22.
  49. Behzad F, Kalyani FN, Samadi A, Adabi M. A promising treatment for HIV-1 using biosynthesis of metal nanoparticles. J Ind Eng Chem. 2022;115:20-25.
  50. Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci. 2014;103 (1):29-52.
  51. Gholam Jamshidi E, Behzad F, Adabi M, Esnaashari SS. Edible iron-pectin nanoparticles: preparation, physicochemical characterization and release study. Food Bioprocess Technol. 2024;17 (3):628-639.
  52. Vijayaram S, Razafindralambo H, Sun Y-Z, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M. Applications of green synthesized metal nanoparticles—a review. Biol Trace Elem Res. 2024;202 (1):360-386.
  53. Alizadeh A. Cytotoxicity and photocatalytic activity of Tl doped CeO2 nanoparticles. Nanomed Res J. 2023;8 (1):61-68.
  54. Egwu CO, Aloke C, Onwe KT, Umoke CI, Nwafor J, Eyo RA, Chukwu JA, Ufebe GO, Ladokun J, Audu DT. Nanomaterials in drug delivery: strengths and opportunities in medicine. Molecules. 2024;29 (11):2584.
  55. Baghban R, Bamdad S, Attar A, Mortazavi M. Implications of nanotechnology for the treatment of Dry Eye Disease: Recent advances. Int J Pharm. 2025:125355.
  56. Nagai N, Otake H. Novel drug delivery systems for the management of dry eye. Adv Drug Deliv Rev. 2022;191:114582.
  57. Coco G, Buffon G, Taloni A, Giannaccare G. Recent advances in nanotechnology for the treatment of dry eye disease. Nanomaterials. 2024;14 (8):669.
  58. Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Drug Deliv Rev. 2017;122:31-64.
  59. López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Molina-Martínez IT. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin Drug Deliv. 2021;18 (7):819-847.
  60. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269 (1):1-14.
  61. Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1 (4):374-380.
  62. Alany R, Rades T, Nicoll J, Tucker I, Davies N. W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J Control Release. 2006;111 (1-2):145-152.
  63. Liu L-C, Chen Y-H, Lu D-W. Overview of recent advances in nano-based ocular drug delivery. Int J Mol Sci. 2023;24 (20):15352.
  64. Pınar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics. 2023;15 (5):1520.
  65. Chai C, Park J. Food liposomes: Structures, components, preparations, and applications. Food Chem. 2024;432:137228.
  66. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015:975-999.
  67. Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current applications of liposomes for the delivery of vitamins: a systematic review. Nanomaterials. 2023;13 (9):1557.
  68. Greco G, Sarpietro MG. Liposome-Assisted Drug Delivery in the Treatment of Multiple Sclerosis. Molecules. 2024;29 (19):4689.
  69. Soriano-Romaní L, Vicario-de-la-Torre M, Crespo-Moral M, López-García A, Herrero-Vanrell R, Molina-Martínez IT, Diebold Y. Novel anti-inflammatory liposomal formulation for the pre-ocular tear film: In vitro and ex vivo functionality studies in corneal epithelial cells. Exp Eye Res. 2017;154:79-87.
  70. Huang L, Gao H, Wang Z, Zhong Y, Hao L, Du Z. Combination nanotherapeutics for dry eye disease treatment in a rabbit model. Int J Nanomedicine. 2021:3613-3631.
  71. Furneri PM, Petronio GP, Fuochi V, Cupri S, Pignatello R. Nanosized devices as antibiotics and antifungals delivery: Past, news, and outlook. Nanostruct Drug Deliv. 2017:697-748.
  72. Çekiç O, Batman C, Yaşar Ü, Totan Y, Başci NE, Bozkurt A, Zilelioglu O, Kayaalp SO. Comparison of subretinal fluid levels of two 0.3% ciprofloxacin‐containing eye drops. Clin Exp Ophthalmol. 2001;29 (1):30-32.
  73. Prasad M, Ranjan K, Brar B, Shah I, Lalmbe U, Manimegalai J, Vashisht B, Gaury M, Kumar P, Khurana SK. Virus-host interactions: new insights and advances in drug development against viral pathogens. Drug Metab. 2017;18 (10):942-970.
  74. López-Machado A, Díaz-Garrido N, Cano A, Espina M, Badia J, Baldomà L, Calpena AC, Souto EB, García ML, Sánchez-López E. Development of lactoferrin-loaded liposomes for the management of dry eye disease and ocular inflammation. Pharmaceutics. 2021;13 (10):1698.
  75. Hedengran A, Freiberg J, Hansen PM, Boix-Lemonche G, Utheim TP, Dartt DA, Petrovski G, Heegaard S, Kolko M. Comparing the effect of benzalkonium chloride-preserved, polyquad-preserved, and preservative-free prostaglandin analogue eye drops on cultured human conjunctival goblet cells. J Optom. 2024;17 (1):100481.
  76. Fogagnolo P, Quisisana C, Caretti A, Marchina D, Dei Cas M, Melardi E, Rossetti L. Efficacy and safety of VisuEvo® and Cationorm® for the treatment of evaporative and non-evaporative dry eye disease: A multicenter, double-blind, cross-over, randomized clinical trial. Clin Ophthalmol. 2020:1651-1663.
  77. Fogagnolo P, Favuzza E, Marchina D, Cennamo M, Vignapiano R, Quisisana C, Rossetti L, Mencucci R. New therapeutic strategy and innovative lubricating ophthalmic solution in minimizing dry eye disease associated with cataract surgery: a randomized, prospective study. Adv Ther. 2020;37:1664-1674.
  78. Hueck A, Wehrmann R. Comparison of the clinical efficacy of four different liposomal sprays for the treatment of dry eye. Open J Ophthalmol. 2017;7 (02):103-116.
  79. Mall J, Naseem N, Haider MF, Rahman MA, Khan S, Siddiqui SN. Nanostructured lipid carriers as a drug delivery system: A comprehensive review with therapeutic applications. Intelligent Pharm. 2024.
  80. Kumar R, Dkhar DS, Kumari R, Mahapatra S, Dubey VK, Chandra P. Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J Drug Deliv Sci Technol. 2022;74:103526.
  81. Grzella A-N, Schleicher S, Shah-Hosseini K, Astvatsatourov A, Raskopf E, Allekotte S, Mösges R. Liposomal eye spray is as effective as antihistamine eye drops in patients with allergic rhinoconjunctivitis induced by conjunctival provocation testing. Int Arch Allergy Immunol. 2019;179 (2):123-131.
  82. Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res. 2020;197:108115.
  83. Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, Kalia K, Tekade RK. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions. J Control Release. 2017;268:19-39.
  84. Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS Pharm Sci Tech. 2023;24 (2):66.
  85. Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24 (1):3.
  86. Yasuda Onozawa Y, Handa O, Naito Y, Ushiroda C, Suyama Y, Toyokawa Y, Murakami T, Yasuda T, Ueda T, Majima A. Rebamipide upregulates mucin secretion of intestinal goblet cells via Akt phosphorylation. Mol Med Rep. 2017;16(6):8216–8222.
  87. Kinoshita S, Oshiden K, Awamura S, Suzuki H, Nakamichi N, Yokoi N, Group ROSPS. A randomized, multicenter phase 3 study comparing 2% rebamipide (OPC-12759) with 0.1% sodium hyaluronate in the treatment of dry eye. Ophthalmology. 2013;120 (6):1158-1165.
  88. Jang D-J, Lee JH, Kim DH, Kim J-W, Koo T-S, Cho KH. The development of super-saturated rebamipide eye drops for enhanced solubility, stability, patient compliance, and bioavailability. Pharmaceutics. 2023;15 (3):950.
  89. Urashima H, Aoki A, Fujita K, Takizawa T, Oshima S. Pre–Clinical Studies of OPC–12759 Ophthalmic Suspension for Dry Eye Treatment. Invest Ophthalmol Vis Sci. 2005;46 (13):894.
  90. Kang C, Keam SJ, Shirley M, Syed YY. Loteprednol etabonate (submicron) ophthalmic gel 0.38%: a review in post-operative inflammation and pain following ocular surgery. Clin Drug Investig. 2020;40:387-394.
  91. Fong R, Cavet ME, DeCory HH, Vittitow JL. Loteprednol etabonate (submicron) ophthalmic gel 0.38% dosed three times daily following cataract surgery: integrated analysis of two Phase III clinical studies. Clin Ophthalmol. 2019:1427-1438.
  92. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, Chourasia MK. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release. 2017;252:28-49.
  93. Gawin-Mikołajewicz A, Nartowski KP, Dyba AJ, Gołkowska AM, Malec K, Karolewicz Be. Ophthalmic nanoemulsions: From composition to technological processes and quality control. Mol Pharm. 2021;18 (10):3719-3740.
  94. Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J Drug Deliv Sci Technol. 2017;41:68-77.
  95. Krishnaiah YS. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. Bioequiv Availab. 2010;2 (2):28-36.
  96. Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J Control Release. 2020;328:895-916.
  97. Ousler III G, Devries DK, Karpecki PM, Ciolino JB. An evaluation of Retaine™ ophthalmic emulsion in the management of tear film stability and ocular surface staining in patients diagnosed with dry eye. Clin Ophthalmol. 2015:235-243.
  98. Buya AB, Beloqui A, Memvanga PB, Préat V. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery. Pharmaceutics. 2020;12 (12):1194.
  99. Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv. 2015;12 (7):1121-1133.
  100. Bang SP, Yeon CY, Adhikari N, Neupane S, Kim H, Lee DC, Son MJ, Lee HG, Kim J-Y, Jun JH. Cyclosporine A eyedrops with self-nanoemulsifying drug delivery systems have improved physicochemical properties and efficacy against dry eye disease in a murine dry eye model. PLoS One. 2019;14 (11):e0224805.
  101. Amrane M, Creuzot-Garcher C, Robert P-Y, Ismail D, Garrigue J-S, Pisella P-J, Baudouin C. Ocular tolerability and efficacy of a cationic emulsion in patients with mild to moderate dry eye disease–A randomised comparative study. J Fr Ophthalmol. 2014;37 (8):589-598.
  102. Lallemand F, Daull P, Benita S, Buggage R, Garrigue J-S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv. 2012;2012 (1):604204.
  103. Srinivasan S, Williams R. Propylene glycol and Hydroxypropyl guar Nanoemulsion-safe and effective lubricant eye drops in the management of dry eye disease. Clin Ophthalmol (Auckl, NZ). 2022;16:3311.
  104. Yeu E, Silverstein S, Guillon M, Schulze M-M, Galarreta D, Srinivasan S, Manoj V. Efficacy and safety of phospholipid nanoemulsion-based ocular lubricant for the management of various subtypes of dry eye disease: a phase IV, multicenter trial. Clin Ophthalmol. 2020:2561-2570.
  105. Baiza-Durán LM, Muñoz-Villegas P, Sánchez-Ríos A, Olvera-Montaño O. Efficacy and Safety of an Ophthalmic DMPC‐Based Nanoemulsion in Patients with Dry Eye Disease: A Phase I/II Randomized Clinical Trial. J Ophthalmol. 2023;2023 (1):1431473.
  106. Jo YJ, Lee JE, Lee JS. Clinical efficacy of 0.05% cyclosporine nano-emulsion in the treatment of dry eye syndrome associated with meibomian gland dysfunction. Int J Ophthalmol. 2022;15 (12):1924.
  107. Arita R, Suehiro J, Haraguchi T, Maeda S, Maeda K, Tokoro H, Amano S. Topical diquafosol for patients with obstructive meibomian gland dysfunction. Br J Ophthalmol. 2013;97 (6):725-729.
  108. Daull P, Amrane M, Ismail D, Georgiev G, Cwiklik L, Baudouin C, Leonardi A, Garhofer G, Garrigue J-S. Cationic emulsion-based artificial tears as a mimic of functional healthy tear film for restoration of ocular surface homeostasis in dry eye disease. J Ocul Pharmacol Ther. 2020;36 (6):355-365.
  109. Alyami H, Abdelaziz K, Dahmash EZ, Iyire A. Nonionic surfactant vesicles (niosomes) for ocular drug delivery: Development, evaluation and toxicological profiling. J Drug Deliv Sci Technol. 2020;60:102069.
  110. Mahale N, Thakkar P, Mali R, Walunj D, Chaudhari S. Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv Colloid Interface Sci. 2012;183:46-54.
  111. Mythili L, Ganesh G, Monisha C, Kayalvizhi R. Ocular drug delivery system-an update review. Pharm Technol. 2019;12 (5):2527-2538.
  112. Ag Seleci D, Seleci M, Walter J-G, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater. 2016;2016.
  113. Durak S, Esmaeili Rad M, Alp Yetisgin A, Eda Sutova H, Kutlu O, Cetinel S, Zarrabi A. Niosomal drug delivery systems for ocular disease—Recent advances and future prospects. Nanomaterials. 2020;10 (6):1191.
  114. Moghassemi S, Hadjizadeh A, Omidfar K. Formulation and characterization of bovine serum albumin-loaded niosome. AAPS PharmSciTech. 2017;18:27-33.
  115. Gaafar PM, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res. 2014;24 (3):204-215.
  116. Ozdemir S, Uner B. Prolonged release niosomes for ocular delivery of loteprednol: Ocular distribution assessment on dry eye disease induced rabbit model. AAPS Pharm Sci Tech. 2024;25 (5):119.