Quantum dot-based sensors and nanotheranostics for early detection and targeted therapy for colorectal cancer

Document Type : Review Paper

Authors

1 School of Pharmaceutical Sciences, CT University, Ferozepur Rd, Sidhwan Khurd, Punjab, India

2 School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India

Abstract

Introduction: Colorectal cancer (CRC) remains one of the most prevalent and fatal cancers worldwide, highlighting the urgent need for the development of advanced diagnostic and therapeutic strategies.
Objective(s): Quantum dots (QDs), semiconductor nanomaterials with distinctive optical properties, have emerged as promising tools in the fight against colorectal cancer (CRC).
Materials and Methods: The ability of QDs to emit tunable fluorescence, combined with their small size and potential for surface functionalization, enables high sensitivity and specificity in early detection and targeted treatment. In the context of CRC, QDs can be used to identify biomarkers such as carcinoembryonic antigen (CEA) and folate receptors, facilitating non-invasive imaging with high resolution.
Results: Furthermore, QDs can be functionalized for targeted therapy, enhancing the selective delivery of chemotherapeutic agents to tumor sites, reducing systemic toxicity, and allowing real-time monitoring of treatment efficacy. Despite these advantages, the clinical application of QDs in CRC is limited by challenges, including toxicity, biocompatibility, long-term stability, and efficient targeting. This review examines the current state of quantum dot-based technologies in CRC diagnostics and therapy, emphasizing their potential as nanotheranostic platforms. We also address the key barriers to clinical translation and propose future research directions to improve quantum dots' safety, efficiency, and clinical utility in CRC management.
Conclusion: Ultimately, quantum dots offer significant potential to revolutionize the diagnosis and treatment of colorectal cancer, paving the way for more personalized and effective patient care.

Keywords


  1. Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol. Hepatol. 2024;21(9):609-625.
  2. Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: Pathogenesis and targeted therapy. Signal Transduct Target Ther. 2024;9(1):266.
  3. Ashique S, Bhowmick M, Pal R, Khatoon H, Kumar P, Sharma H, Garg A, Kumar S, Das U. Multi-drug resistance in colorectal cancer—approaches to overcome, advancements, and future success. Adv Cancer Biol Metastasis. 2024;10:100114.
  4. Rengers C, Gaponik N, Eychmüller A. Quantum Dots and Quantum Rods. In Book: Biological Responses to Nanoscale Particles (Springer Cham Pvt Ltd, Neitherlands) 2019: 29-51
  5. Guandalini A, Rozzi C, Rasanen E, Pittalis S. Fundamental gaps of quantum dots on the cheap. Phys Rev B. 2019;99:125140.
  6. Langbein W. Quantum dots: all spins under control. Nat Mater. 2006;5:519-520.
  7. Li C, Yan Z, Chen L, Jin J, Li D. Desmin detection by facile prepared carbon quantum dots for early screening of colorectal cancer. Medicine (Baltimore). 2017;96.
  8. Gazouli M, Lyberopoulou A, Pericleous P, Rizos S, Aravantinos G, Nikiteas N, Anagnou N, Efstathopoulos E. Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection. World J Gastroenterol. 2012;18(32):4419-4426.
  9. Carbary-Ganz JL, Barton J, Utzinger U. Quantum dots targeted to vascular endothelial growth factor receptor 2 as a contrast agent for the detection of colorectal cancer. J Biomed Opt. 2014;19:086003.
  10. Bostick R, Kong K, Ahearn T, Chaudry Q, Cohen V, Wang MD. Detecting and quantifying biomarkers of risk for colorectal cancer using quantum dots and novel image analysis algorithms. Conf Proc IEEE Eng Med Biol Soc. 2006;3313-3316.
  11. Chaudry Q, Kong K, Ahearn T, Cohen V, Bostick R, Wang MD. An integrated image quantification system for colorectal cancer risk assessment using quantum dots and molecular profiling. Proc IEEE Int Symp Biomed Imaging. 2007;1280-1283.
  12. Zhang H, Fu X, Hu J, Zhu Z. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels. Anal Chim Acta. 2013;779:64-71.
  13. Wang Y, Li Y, Chen Z, Wang T, Gu J, Wu X, Yin Y, Wang M, Pan Z. The evaluation of colorectal cancer risk in serum by anti-DESMIN-conjugated CdTe/CdS quantum dots. Clin Lab. 2017;63(3):579-586.
  14. Wang S, Li W, Yuan D, Song J, Fang J. Quantitative detection of the tumor-associated antigen large external antigen in colorectal cancer tissues and cells using quantum dot probe. Int J Nanomedicine. 2016;11:235-247.
  15. Rohith V, Namboori PK. Design and development of an ‘early prediction machine’ for colorectal cancer from pathological images through quantum image processing technique – a theranostic approach. Proc Int Conf Adv Sci Innov Sci Eng Technol. ICASISET. 2021.
  16. Yang C, Xu C, Wang X, Hu X. Quantum-dot-based biosensor for simultaneous detection of biomarker and therapeutic drug: first steps toward an assay for quantitative pharmacology. Analyst. 2012;137(5):1205-1209.
  17. Li Z, Huang P, He R, Lin J, Yang S, Zhang X, Ren Q, Cui D. Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Mater Lett. 2010;64:375-378.
  18. Lian S, Zhang P, Gong P, Hu D, Shi B, Zeng C, Cai L. A universal quantum dots-aptamer probe for efficient cancer detection and targeted imaging. J Nanosci Nanotechnol. 2012;12(10):7703-7708.
  19. Balakrishnan T, Ang WL, Mahmoudi E, Sambudi NS. Recent development of quantum dots@ metal-organic framework composites as potential chemical and biological luminescence nanosensors. Phys B Condens Matter. 2024;673:415485.
  20. Li Z, Huang P, Lin J, He R, Liu B, Zhang X, Yang S, Xi P, Zhang X, Ren Q, Cui D. Arginine-glycine-aspartic acid-conjugated dendrimer-modified quantum dots for targeting and imaging melanoma. J Nanosci Nanotechnol. 2010;10(8):4859-4867.
  21. Zhang Y, Zhang J. Confocal study of specific targeting of quantum dot nanocomposites to cancer cells. Key Eng Mater. 2005;288-289:155-158.
  22. Yao C, Tu Y, Ding L, Li C, Wang J, Fang H, Huang Y, Zhang K, Lu Q, Wu M, Wang Y. Tumor cell-specific nuclear targeting of functionalized graphene quantum dots in vivo. Bioconjug Chem. 2017;28(10):2608-2619.
  23. Wang X, Ding J, Li JY, Jiang H, Wang Z, Shi W. Applications of quantum dots in cancer research. Adv Mater Res. 2011;345:29-34.
  24. Haikang H, Yan J, Liu P, Zhao B-Y, Cao Y, Zhang X. A novel cancer nanotheranostics system based on quantum dots encapsulated by a polymer-prodrug with controlled release behaviour. Aust J Chem. 2017;70:1302-1311.
  25. Abdelhamid AS, Helmy M, Ebrahim S, Bahey-El-Din M, Zayed D, Zein El Dein EA, El-Gizawy S, Elzoghby AO. Layer-by-layer gelatin/chondroitin quantum dots-based nanotheranostics: combined rapamycin/celecoxib delivery and cancer imaging. Nanomedicine (Lond.) 2018; 13(14):1707-30.
  26. Trantum JR, Jayagopal A. Imaging of cell populations in atherosclerosis using quantum dot nanocrystals. Methods Mol Biol. 2013;1026:35-44.
  27. Parhi P, Sahoo S. Trastuzumab guided nanotheranostics: A lipid-based multifunctional nanoformulation for targeted drug delivery and imaging in breast cancer therapy. J Colloid Interface Sci. 2015;451:198-211.
  28. Panchal H, Panjwani D, Patel S, Ahlawat P, Patel LD, Dharamsi A, Patel A. Quantum dots functionalized polymeric nanoparticles as cancer theranostics: An advanced nanomedicine strategy. Curr Cancer Drug Targets. 2024: 1-13
  29. Mohammadnejad P, Hosseini SM, Sohrabi B. The graphene quantum dots encased in the molecularly imprinted polymer as a new fluorescent nanosensor for the detection of biotin. Sens. Actuators Rep. 2024;7:100187.
  30. Nguyen QK, Nguyen DT, Pham TM, Pham B, Nguyen TA, Pham TD, Sharma S, Pham DT, Gangavarapu RR, Pham TN. A highly sensitive fluorescence nanosensor for determination of amikacin antibiotics using composites of carbon quantum dots and gold nanoparticles. Spectrochim. Acta A Mol Biomol Spectrosc. 2024;305:123466.
  31. Bao L, Luo W, Li Q, Zhang Y, Zhang Z, Li X, Wang L, Zhang J, Huang K, Yu X, Xu L. Chiral carbon dots based on ternary carbon sources: A multifunctional therapeutic agent for Cu2+-induced Alzheimer's disease. Carbon. 2024;228:119333.
  32. Li J, Yang Y, Liu P. Hybrid micelles of carbon quantum dot-doxorubicin conjugates as nanotheranostics for tumor therapy and turn-on fluorescence imaging: Impact of conjugated structures and on-off-on mechanism. Mol Pharm. 2023.
  33. Won SY, Singhmar R, Sahoo S, Kim H, Kim CM, Choi SM, Sood A, Han SS. Fabrication of albumin-Ti3C2 MXene quantum dots-based nanohybrids for breast cancer imaging and synergistic photo/chemotherapeutics. Colloids Surf B: Biointerfaces. 2025;245:114207.
  34. Ree A, Bratland A, Dueland S. Molecular targeted therapy in colorectal cancer. Tidsskr Nor Laegeforen. 2008;128(2):190-193.
  35. Borner M. Molecular targets in colon cancer. Ther Umsch. 2006;63(4):243-248.
  36. Sablin M, Dreyer C, Colichi C, Bouattour M, Faivre S. Targeted therapies in colorectal cancer. Rev Prat. 2010;60(8):1094-1099.
  37. Van Cutsem E, Dicato M, Arber N, Berlin J, Cervantes A, Ciardiello F, de Gramont A, et al. Molecular markers and biological targeted therapies in metastatic colorectal cancer: expert opinion and recommendations derived from the 11th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2009. Ann Oncol. 2010;21 Suppl 6:vi1-10.
  38. Patel MR, Park TJ, Kailasa SK. Eu³⁺ ion-doped strontium vanadate perovskite quantum dots-based novel fluorescent nanosensor for selective detection of creatinine in biological samples. J Photochem Photobiol A Chem. 2024;449:115376.
  39. Ebru N. Therapeutic targeting of molecular pathways in colorectal cancer. Exp Oncol. 2022;44(1):2-6.
  40. El Hamd MA, El‐Maghrabey M, Almawash S, Radwan AS, El‐Shaheny R, Magdy G. Citrus/urea nitrogen‐doped carbon quantum dots as nanosensors for vanillin determination in infant formula and food products via factorial experimental design fluorimetry and smartphone. Luminescence. 2024;39(2):e4643.
  41. Bartos A, Bartos D, Szabo B, Breazu C, Opincariu I, Mironiuc A, Iancu C. Recent achievements in colorectal cancer diagnostic and therapy by the use of nanoparticles. Drug Metab Rev. 2016;48:27-46.
  42. Wang N, Chen L, Huang W, Gao Z, Jin M. Current Advances of Nanomaterial-Based Oral Drug Delivery for Colorectal Cancer Treatment. Nanomaterials (Basel). 2024;14.
  43. Kasi P, Mallela VR, Ambrożkiewicz F, Trailin A, Liska V, Hemminki K. Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances. Int J Mol Sci. 2023;24.
  44. Chauhan S, Sharma S. Recent Approaches on Molecular Markers, Treatment and Novel Drug Delivery System Used for the Management of Colorectal Cancer: A Comprehensive Review. Curr Pharm Biotechnol. 2024;25(15):1969-85.
  45. Viswanath B, Kim S, Lee K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int J Nanomedicine. 2016;11:2491-2504.
  46. Shrivastav J, Khansili N. Recent progress on multiplexed detection strategies of heavy metals with emphasis on Quantum dots. Trends Environ. Anal Chem. 2024;e00244.
  47. Cabeza L, Perazzoli G, Mesas C, Jiménez-Luna C, Prados J, Rama A, Melguizo C. Nanoparticles in Colorectal Cancer Therapy: Latest In Vivo Assays, Clinical Trials, and Patents. AAPS Pharm Sci Tech. 2020;21.
  48. Jain A, Bhattacharya S. Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: a critical review. Front Oncol. 2023;13:1211603.
  49. Öztürk D, Durmuş M. N-Doped carbon quantum dot–based ratiometric fluorescent nanosensor platforms for detection of gastric cancer-associated Helicobacter pylori genes. Microchim Acta. 2025;192(3):147.
  50. Yadav A, Kumar R, Jaiswal R, Singh AK, Kumar P, Singh K. Surface modification of CdS quantum dots: an effective approach for improving biocompatibility. Mater Res Express. 2019;6: 182-192
  51. Jin G, Jiang L, Yi D, Sun H, Sun HC. The Influence of Surface Modification on the Photoluminescence of CdTe Quantum Dots: Realization of Bio-Imaging via Cost-Effective Polymer. Chem Phys Chem. 2015;16(17):3687-3694.
  52. Liu X, Luo Y. Surface Modifications Technology of Quantum Dots Based Biosensors and Their Medical Applications. Chin J Anal Chem. 2014;42:1061-1069.
  53. Lisichkin G, Olenin A. Synthesis of surface-modified quantum dots. Russ Chem Bull. 2020;69:1819-1828.
  54. Wang J, Han S, Ke D, Wang R. Semiconductor quantum dots surface modification for potential cancer diagnostic and therapeutic applications. J Nanomater. 2012;2012:1-8.
  55. Alaghmandfard A, Sedighi O, Tabatabaei Rezaei N, Abedini A, Malek Khachatourian A, Toprak M, Seifalian A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater Sci Eng C. 2021;120:111756.
  56. Matsuno R, Goto Y, Konno T, Takai M, Ishihara K. Controllable nanostructured surface modification on quantum dot for biomedical application in aqueous medium. J Nanosci Nanotechnol. 2009;9(1):358-365.
  57. Girma WM, Fahmi MZ, Permadi A, Abate M, Chang JY. Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots. J Mater Chem. B. 2017;5(31):6193-6216.
  58. Argudo PG, Carril M, Martín-Romero MT, Giner-Casares JJ, Carrillo-Carrión C. Surface-active fluorinated quantum dots for enhanced cellular uptake. Chemistry. 2018;25(1):195-199.
  59. Dezfuli AA, Abu-Elghait M, Salem SS. Recent insights into nanotechnology in colorectal cancer. Appl Biochem Biotechnol. 2024;196(7):4457-4471.
  60. Hajjafari A, Sadr S, Rahdar A, Bayat M, Lotfalizadeh N, Dianaty S, Rezaei A, Moghaddam SP, Hajjafari K, Simab PA, Kharaba Z. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. Inorg Chem Commun. 2024;112409.
  61. Mao X, Li X, Liu S, Dong H, Jia W, Xu W, Wu X, Zhang Y. Global research trends on nanotechnology and colorectal cancer: a two-decade analysis. Nanomedicine (Lond.) 2025; 1-2.
  62. Astolfi M, Zonta G, Malagù C, Anania G, Rispoli G. MOX nanosensors to detect colorectal cancer relapses from patient’s blood at three years follow-up, and gender correlation. Biosensors (Basel). 2025;15(1):56.
  63. Yang G, Cao Y, Yang X, Cui T, Tan NZ, Lim YK, Fu Y, Cao X, Bhandari A, Enikeev M, Efetov S. Advancements in nanomedicine: Precision delivery strategies for male pelvic malignancies–Spotlight on prostate and colorectal cancer. Exp Mol Pathol. 2024;137:104904.
  64. Lahouty M, Fadaee M, Shanehbandi D, Kazemi T. Exosome-driven nano-immunotherapy: Revolutionizing colorectal cancer treatment. Mol Biol Rep. 2025;52(1):1-8.
  65. Dang Q, Zuo L, Hu X, Zhou Z, Chen S, Liu S, Ba Y, Zuo A, Xu H, Weng S, Zhang Y. Molecular subtypes of colorectal cancer in the era of precision oncotherapy: Current inspirations and future challenges. Cancer Med. 2024;13(14):e70041.