Innovations in nanoparticle-based drug delivery for lung cancer: recent developments and future horizons

Document Type : Review Paper

Authors

Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At-Sahajanandnagar, Post-Shingnapur, Tal-Koparagon, Dist-Ahmednagar, Maharashtra, India

Abstract

Lung cancer is a serious disease with a low overall survival rate due to delayed detection and ineffective conventional therapy. Advances in material science have led to the development of unique nanoscale-based theranostic agents, providing renewed hope for lung cancer patients. Nanocarrier-based drug delivery is an emerging modality for treating lung cancer, offering enhanced bioavailability, in vivo stability, better solubility, greater safety, and sustained, controlled targeted drug delivery. Various types of nanocarriers have been investigated against lung cancer, including liposomes, polymer-drug conjugates, NPs, micelles, dendrimers, carbon nanotubes, and nanofibres. This review aims to provide an overview of various receptors overexpressed in lung cancer, the various targeting approaches of NPs, and the therapeutic involvement of nanosized carriers as targeting tools for lung cancer treatment. It also highlights the progress in the development and design of nano carrier-based pulmonary as well as co-delivery systems, as well as insights into cilical trials, formulation challenges, and physicochemical characteristics of nanocarriers affecting their in vitro and in vivo performance.

Keywords


  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.
  2. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;149(4):778–789.
  3. World Health Organization. 2021. 2021. [Internet]. Available from: https://www.who.int/en/news-room/fact-sheets/detail/cancer.
  4. Mohtar N, Parumasivam T, Gazzali AM, Tan CS, Tan ML, Othman R, et al. Advanced Nanoparticle-Based Drug Delivery Systems and Cancer Treatment. Cancers (Basel). 2021;(Lc):1–26.
  5. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–263.
  6. Society American Cancer. Global cancer facts and figures. American Cancer Society. 2024; 1–48.
  7. Wheless L, Brashears J, Alberg AJ. Epidemiology of lung cancer. Lung Cancer Imaging. 2013;1–15.
  8. Clark SB, Alsubait S. Non–Small Cell Lung Cancer. In Treasure Island (FL); 2024.
  9. Basumallik N, Agarwal M. Small Cell Lung Cancer. In Treasure Island (FL); 2024.
  10. Shams M, Abdallah S, Alsadoun L, Hamid YH, Gasim R, Hassan A. Oncological Horizons: The Synergy of Medical and Surgical Innovations in Cancer Treatment. Cureus. 2023;15(11).
  11. Mokwena MG, Kruger CA, Ivan MT, Heidi A. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagnosis Photodyn Ther. 2018;22:147–154.
  12. Hristova-Panusheva K, Xenodochidis C, Georgieva M, Krasteva N. Nanoparticle-Mediated Drug Delivery Systems for Precision Targeting in Oncology. Pharmaceuticals. 2024;17(6):1–25.
  13. Alshammari MK, Almomen EY, Alshahrani KF, Altwalah SF, Kamal M, Al-Twallah MF, et al. Nano-Enabled Strategies for the Treatment of Lung Cancer: Potential Bottlenecks and Future Perspectives. Biomedicines. 2023;11(2).
  14. Wang J, Zhou T, Liu Y, Chen S, Yu Z. Application of NPs in the Treatment of Lung Cancer With Emphasis on Receptors. Front Pharmacol. 2022;12(January):1–14.
  15. Bordeianu G, Filip N, Cernomaz A, Veliceasa B, Hurjui LL, Pinzariu AC, et al. The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines. 2023;11(3):1–20.
  16. Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, et al. Review on NPs and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials. 2022;12(3).
  17. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci. 2020;7:193.
  18. Bhutani M, Gharwan H. EGFR, growth factors. Cancer Ther Targets. 2017;2–2:707–17.
  19. Liu TC, Jin X, Wang Y, Wang K. Role of epidermal growth factor receptor in lung cancer and targeted therapies. Am J Cancer Res. 2017;7(2):187–202.
  20. Karlsen EA, Kahler S, Tefay J, Joseph SR, Simpson F. Epidermal Growth Factor Receptor Expression and Resistance Patterns to Targeted Therapy in Non-Small Cell Lung Cancer: A Review. Cells. 2021;10(5).
  21. Khaddour K, Jonna S, Deneka A, Patel JD, Abazeed ME, Golemis E, et al. Targeting the Epidermal Growth Factor Receptor in EGFR-Mutated Lung Cancer: Current and Emerging Therapies. Cancers (Basel). 2021;13(13).
  22. Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, et al. Growth Hormone and Neuronal Hemoglobin in the Brain—Roles in Neuroprotection and Neurodegenerative Diseases. Front Endocrinol (Lausanne). 2021;11(January):1–15.
  23. Zhang C, Cui T, Cai R, Wangpaichitr M, Mirsaeidi M, Schally A V., et al. Growth hormone-releasing hormone in lung physiology and pulmonary disease. Cells. 2020;9(10):1–14.
  24. Gonzalez T, Muminovic M, Nano O, Vulfovich M. Folate Receptor Alpha-A Novel Approach to Cancer Therapy. Int J Mol Sci. 2024;25(2).
  25. Nunez MI, Behrens C, Woods DM, Lin H, Suraokar M, Kadara H, et al. High expression of folate receptor alpha in lung cancer correlates with adenocarcinoma histology and EGFR (corrected) mutation. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2012 May;7(5):833–840.
  26. Antony AC. Folate receptors. Annu Rev Nutr. 1996;16:501–521.
  27. Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes and Cancer. 2011;2(12):1097–1105.
  28. Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007;19(10):2003–2012.
  29. Al Khashali H, Darweesh B, Ray R, Haddad B, Wozniak C, Ranzenberger R, et al. Regulation of Vascular Endothelial Growth Factor Signaling by Nicotine in a Manner Dependent on Acetylcholine-and/or β-Adrenergic-Receptors in Human Lung Cancer Cells. Cancers (Basel). 2023;15(23).
  30. Spagnuolo A, Palazzolo G, Sementa C, Gridelli C. Vascular endothelial growth factor receptor tyrosine kinase inhibitors for the treatment of advanced non-small cell lung cancer. Expert Opin Pharmacother. 2020;21(4):491–506.
  31. Li X, Taratula O, Taratula O, Schumann C, Minko T. LHRH-Targeted Drug Delivery Systems for Cancer Therapy. Mini-Reviews Med Chem. 2016;17(3):258–267.
  32. Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control release Off J Control Release Soc. 2015;219:500–518.
  33. Pacini L, Jenks AD, Lima NC, Huang PH. Targeting the Fibroblast Growth Factor Receptor (FGFR) Family in Lung Cancer. Cells. 2021;10(5).
  34. Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells. 2021;10(5).
  35. Ahmad I, Iwata T, Leung HY. Mechanisms of FGFR-mediated carcinogenesis. Biochim Biophys Acta. 2012;1823(4):850–860.
  36. Templeton AK, Miyamoto S, Babu A, Munshi A, Ramesh R. Cancer stem cells: Progress and challenges in lung cancer. Stem Cell Investig. 2014;2014(APR):1–18.
  37. Wang YY, Vadhan A, Chen PH, Lee YL, Chao CY, Cheng KH, et al. Cd44 promotes lung cancer cell metastasis through erk–zeb1 signaling. Cancers (Basel). 2021;13(16):1–15.
  38. Luo Z, Wu RR, Lv L, Li P, Zhang LY, Hao QL, et al. Prognostic value of CD44 expression in non-small cell lung cancer: A systematic review. Int J Clin Exp Pathol. 2014;7(7):3632–3646.
  39. da Silva EC, Dontenwill M, Choulier L, Lehmann M. Role of integrins in resistance to therapies targeting growth factor receptors in cancer. Cancers (Basel). 2019;11(5).
  40. Caccavari F, Valdembri D, Sandri C, Bussolino F, Serini G. Integrin signaling and lung cancer. Cell Adh Migr. 2010;4(1):124–129.
  41. Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells. 2023;12(2).
  42. Bartolazzi A, Cerboni C, Flamini G, Bigotti A, Lauriola L, Natali PG. Expression of alpha 3 beta 1 integrin receptor and its ligands in human lung tumors. Int J Cancer. 1995;64(4):248–252.
  43. Rankin EB, Giaccia AJ. The receptor tyrosine kinase AXL in cancer progression. Cancers (Basel). 2016;8(11).
  44. Auyez A, Sayan AE, Kriajevska M, Tulchinsky E. AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew. Cancers (Basel). 2021;13(19).
  45. Zhang G, Wang M, Zhao H, Cui W. Function of axl receptor tyrosine kinase in non-small cell lung cancer (Review). Oncol Lett. 2018;15(3):2726–2734.
  46. Li H, Zhang Q, Wu Q, Cui Y, Zhu H, Fang M, et al. IL-22 regulates lung cancer proliferation. 2019;11(7):4077–4088.
  47. Kobold S, Völk S, Clauditz T, Küpper NJ, Minner S, Tufman A, et al. Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2013;8(8):1032–1042.
  48. Fishman P, Bar-Yehuda S, Synowitz M, Powell JD, Klotz KN, Gessi S, et al. Adenosine receptors and cancer. Handb Exp Pharmacol. 2009;(193):399–441.
  49. Asgharkhah E, Saghaeian Jazi M, Asadi J, Jafari SM. Gene expression pattern of adenosine receptors in lung tumors. Cancer reports (Hoboken, NJ). 2023;6(3):e1747.
  50. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. 2010;330(6007):1066–1071.
  51. Fung AS, Kopciuk K, Dean ML, D’Silva A, Otsuka S, Klimowicz A, et al. CXCR4 expression in lung carcinogenesis: Evaluating gender-specific differences in survival outcomes based on CXCR4 expression in early stage non-small cell lung cancer patients. PLoS One (Internet). 2021;16(1 January):1–12.
  52. Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J. 2018;285(16):2944–2971.
  53. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82.
  54. Wada E, Way J, Shapira H, Kusano K, Lebacq-Verheyden AM, Coy D, et al. cDNA cloning, characterization, and brain region-specific expression of a neuromedin-B-preferring bombesin receptor. Neuron. 1991;6(3):421–430.
  55. Battey JF, Way JM, Corjay MH, Shapira H, Kusano K, Harkins R, et al. Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1991;88(2):395–399.
  56. Fathi Z, Corjay MH, Shapira H, Wada E, Benya R, Jensen R, et al. BRS-3: a novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem. 1993;268(8):5979–5984.
  57. Moody TW, Sancho V, Di Florio A, Nuche-Berenguer B, Mantey S, Jensen RT. Bombesin receptor subtype-3 agonists stimulate the growth of lung cancer cells and increase EGF receptor tyrosine phosphorylation. Peptides. 2011;32(8):1677–1684.
  58. Fitter S, Sincock PM, Jolliffe CN, Ashman LK. Transmembrane 4 superfamily protein CD151 (PETA-3) associates with beta 1 and alpha IIb beta 3 integrins in haemopoietic cell lines and modulates cell-cell adhesion. Biochem J. 1999;338 ( Pt 1(Pt 1):61–70.
  59. Kwon MJ, Seo J, Kim YJ, Kwon MJ, Choi JY, Kim TE, et al. Prognostic significance of CD151 overexpression in non-small cell lung cancer. Lung Cancer. 2013;81(1):109–116.
  60. van Waarde A, Rybczynska AA, Ramakrishnan NK, Ishiwata K, Elsinga PH, Dierckx RAJO. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochim Biophys Acta. 2015;1848(10 Pt B):2703–2714.
  61. Georgiadis MO, Karoutzou O, Foscolos AS, Papanastasiou I. Sigma Receptor (σR) Ligands with Antiproliferative and Anticancer Activity. Molecules. 2017;22(9).
  62. Villalobos P, Wistuba II. Lung Cancer Biomarkers. Hematol Oncol Clin North Am. 2017;31(1):13–29.
  63. Huang H. Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: A Catalytic Receptor with Many Faces. Int J Mol Sci. 2018;19(11).
  64. Mousa DP V, Mavrovounis G, Argyropoulos D, Stranjalis G, Kalamatianos T. Anaplastic Lymphoma Kinase (ALK) in Posterior Cranial Fossa Tumors: A Scoping Review of Diagnostic, Prognostic, and Therapeutic Perspectives. Cancers (Basel). 2024;16(3).
  65. Kiełbowski K, Żychowska J, Becht R. Anaplastic lymphoma kinase inhibitors-a review of anticancer properties, clinical efficacy, and resistance mechanisms. Front Pharmacol. 2023;14:1285374.
  66. Araujo JM, Gomez AC, Pinto JA, Rolfo C, Raez LE. Profile of entrectinib in the treatment of ROS1-positive non-small cell lung cancer: Evidence to date. Hematol Oncol Stem Cell Ther. 2021;14(3):192–8.
  67. Gendarme S, Bylicki O, Chouaid C, Guisier F. ROS-1 Fusions in Non-Small-Cell Lung Cancer: Evidence to Date. Curr Oncol. 2022;29(2):641–658.
  68. Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–1198.
  69. Batool S, Sohail S, Ud Din F, Alamri AH, Alqahtani AS, Alshahrani MA, et al. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv. 2023;30(1):2183815.
  70. Bazak R, Houri M, Achy S El, Hussein W, Refaat T. Passive targeting of NPs to cancer: A comprehensive review of the literature. Mol Clin Oncol. 2014;2(6):904–908.
  71. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun (Internet). 2018;9(1).
  72. Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater. 2013;12(11):958–62.
  73. Stathopoulos GP, Boulikas T. Lipoplatin formulation review article. J Drug Deliv. 2012;2012:581363.
  74. Chae YK, Chang S, Ko T, Anker J, Agte S, Iams W, et al. Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC). Sci Rep. 2018;8(1):2918.
  75. Sousa C, Gouveia LF, Kreutzer B, Silva-Lima B, Maphasa RE, Dube A, et al. Polymeric Micellar Formulation Enhances Antimicrobial and Anticancer Properties of Salinomycin. Pharm Res. 2019;36(6):83.
  76. Sunil Gowda SN, Rajasowmiya S, Vadivel V, Banu Devi S, Celestin Jerald A, Marimuthu S, et al. Gallic acid-coated sliver nanoparticle alters the expression of radiation-induced epithelial-mesenchymal transition in non-small lung cancer cells. Toxicol Vitr an Int J Publ Assoc with BIBRA. 2018;52:170–177.
  77. Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, et al. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules. 2024;29(5).
  78. Yoo J, Park C, Yi G, Lee D, Koo H. Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems. Cancers (Basel). 2019;11(5).
  79. Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine. 2018;13:3921–3935.
  80. Wathoni N, Puluhulawa LE, Joni IM, Muchtaridi M, Mohammed AFA, Elamin KM, et al. Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Deliv. 2022;29(1):2959–2970.
  81. Singh RP, Sharma G, Sonali, Singh S, Bharti S, Pandey BL, et al. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater Sci Eng C Mater Biol Appl. 2017;77:446–458.
  82. Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Target delivery of doxorubicin tethered with PVP stabilized gold NPs for effective treatment of lung cancer. Sci Rep (Internet). 2018;8(1):1–12.
  83. Mashinchian O, Johari-Ahar M, Ghaemi B, Rashidi M, Barar J, Omidi Y. Impacts of quantum dots in molecular detection and bioimaging of cancer. Bioimpacts. 2014;4(3):149–166.
  84. Ebrahimnejad P, Sodagar Taleghani A, Asare-Addo K, Nokhodchi A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov Today. 2022;27(2):471–489.
  85. Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023;22(8):641–661.
  86. Zhang CW, Zhang JG, Yang X, Du WL, Yu ZL, Lv ZY, et al. Carbohydrates based stimulus responsive nanocarriers for cancer-targeted chemotherapy: a review of current practices. Expert Opin Drug Deliv. 2022;19(6):623–640.
  87. Samec T, Boulos J, Gilmore S, Hazelton A, Alexander-Bryant A. Peptide-based delivery of therapeutics in cancer treatment. Mater today Bio. 2022;14:100248.
  88. Gao F, Yin J, Chen Y, Guo C, Hu H, Su J. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Front Bioeng Biotechnol. 2022;10:972933.
  89. Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics. 2020;10(10):4557–4588.
  90. Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. Nanomater (Basel, Switzerland). 2021;11(3).
  91. Verkhovskii RA, Ivanov AN, Lengert E V., Tulyakova KA, Shilyagina NY, Ermakov A V. Current Principles, Challenges, and New Metrics in pH-Responsive Drug Delivery Systems for Systemic Cancer Therapy. Pharmaceutics. 2023;15(5).
  92. Morarasu S, Morarasu BC, Ghiarasim R, Coroaba A, Tiron C, Iliescu R, et al. Targeted Cancer Therapy via pH-Functionalized NPs: A Scoping Review of Methods and Outcomes. Gels (Basel, Switzerland). 2022;8(4).
  93. Li M, Zhao G, Su WK, Shuai Q. Enzyme-Responsive NPs for Anti-tumor Drug Delivery. Front Chem. 2020;8:647.
  94. Liu H, Yang F, Chen W, Gong T, Zhou Y, Dai X, et al. Enzyme-Responsive Materials as Carriers for Improving Photodynamic Therapy. Front Chem. 2021;9(November):1–8.
  95. Ruan L, Chen J, Du C, Lu H, Zhang J, Cai X, et al. Mitochondrial temperature-responsive drug delivery reverses drug resistance in lung cancer. Bioact Mater. 2022;13:191–199.
  96. Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, et al. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers (Basel). 2021;13(4).
  97. Kohli AG, Kierstead PH, Venditto VJ, Walsh CL, Szoka FC. Designer lipids for drug delivery: from heads to tails. J Control release Off J Control Release Soc. 2014;190:274–287.
  98. Jiménez-López J, Bravo-Caparrós I, Cabeza L, Nieto FR, Ortiz R, Perazzoli G, et al. Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes. Biomed Pharmacother. 2021;133:111059.
  99. Naik H, Sonju JJ, Singh S, Chatzistamou I, Shrestha L, Gauthier T, et al. Lipidated Peptidomimetic Ligand-Functionalized HER2 Targeted Liposome as Nano-Carrier Designed for Doxorubicin Delivery in Cancer Therapy. Pharmaceuticals (Basel). 2021;14(3).
  100. Lin C, Zhang X, Chen H, Bian Z, Zhang G, Riaz MK, et al. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv. 2018;25(1):256–266.
  101. Han Y, Zhang P, Chen Y, Sun J, Kong F. Co-delivery of plasmid DNA and doxorubicin by solid lipid NPs for lung cancer therapy. Int J Mol Med. 2014;34(1):191–196.
  102. Kim J, Ramasamy T, Choi JY, Kim ST, Youn YS, Choi HG, et al. PEGylated polypeptide lipid nanocapsules to enhance the anticancer efficacy of erlotinib in non-small cell lung cancer. Colloids Surf B Biointerfaces. 2017;150:393–401.
  103. Wang JY, Song YQ, Peng J, Luo HL. Nanostructured Lipid Carriers Delivering Sorafenib to Enhance Immunotherapy Induced by Doxorubicin for Effective Esophagus Cancer Therapy. ACS Omega. 2020;5(36):22840–22846.
  104. Dilnawaz D, Sahoo S. Augmented Anticancer Efficacy by si-RNA Complexed Drug-Loaded Mesoporous Silica NPs in Lung Cancer Therapy. ACS Appl Nano Mater. 2018;1.
  105. Amreddy N, Babu A, Panneerselvam J, Srivastava A, Muralidharan R, Chen A, et al. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer NPs for lung cancer treatment. Nanomedicine. 2018 Feb;14(2):373–384.
  106. Han Y, Li Y, Zhang P, Sun J, Li X, Sun X, et al. Nanostructured lipid carriers as novel drug delivery system for lung cancer gene therapy. Pharm Dev Technol. 2016;21(3):277–281.
  107. Kamazani FM, Sotoodehnejad Nematalahi F, Siadat SD, Pornour M, Sheikhpour M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. Sci Rep. 2021;11(1):24419.
  108. Yang Q, Peng J, Xiao Y, Li W, Tan L, Xu X, et al. Porous Au@Pt NPs: Therapeutic Platform for Tumor Chemo-Photothermal Co-Therapy and Alleviating Doxorubicin-Induced Oxidative Damage. ACS Appl Mater Interfaces. 2018;10(1):150–164.
  109. Crous A, Abrahamse H. Effective Gold Nanoparticle-Antibody-Mediated Drug Delivery for Photodynamic Therapy of Lung Cancer Stem Cells. Int J Mol Sci. 2020;21(11).
  110. Ruzycka-Ayoush M, Kowalik P, Kowalczyk A, Bujak P, Nowicka AM, Wojewodzka M, et al. Quantum dots as targeted doxorubicin drug delivery nanosystems. Cancer Nanotechnol (Internet). 2021;12(1):1–27.
  111. Gandhi S, Roy I. Lipid-Based Inhalable Micro- and Nanocarriers of Active Agents for Treating Non-Small-Cell Lung Cancer. Pharmaceutics. 2023;15(5).
  112. Zhang Y, Li A, Wang Z, Han Z, He J, Ma J. Antimetastatic activities of pegylated liposomal doxorubicin in a murine metastatic lung cancer model. J Drug Target. 2008;16(9):679–87.
  113. Suzuki S, Kawakami S, Chansri N, Yamashita F, Hashida M. Inhibition of pulmonary metastasis in mice by all-trans retinoic acid incorporated in cationic liposomes. J Control release Off J Control Release Soc. 2006;116(1):58–63.
  114. Siddikuzzaman, Grace VMB. Anti-metastatic study of liposome-encapsulated all trans retinoic acid (ATRA) in B16F10 melanoma cells-implanted C57BL/6 mice. Cancer Invest. 2014;32(10):507–17.
  115. Hamad I, Harb AA, Bustanji Y. Liposome-Based Drug Delivery Systems in Cancer Research: An Analysis of Global Landscape Efforts and Achievements. Pharmaceutics. 2024;16(3).
  116. Fulton MD, Najahi-Missaoui W. Liposomes in Cancer Therapy: How Did We Start and Where Are We Now. Int J Mol Sci. 2023;24(7).
  117. Koshkina N V, Waldrep JC, Roberts LE, Golunski E, Melton S, Knight V. Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin cancer Res an Off J Am Assoc Cancer Res. 2001;7(10):3258–62.
  118. Sawant SS, Patil SM, Shukla SK, Kulkarni NS, Gupta V, Kunda NK. Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation. Drug Deliv Transl Res. 2022;12(10):2474–87.
  119. Wang X, Cai H, Huang X, Lu Z, Zhang L, Hu J, et al. Formulation and evaluation of a two-stage targeted liposome coated with hyaluronic acid for improving lung cancer chemotherapy and overcoming multidrug resistance. J Biomater Sci Polym Ed. 2023;34(14):1928–51.
  120. Omidian H, Gill EJ, Cubeddu LX. Lipid NPs in Lung Cancer Therapy. Pharmaceutics. 2024;16(5).
  121. German-Cortés J, Vilar-Hernández M, Rafael D, Abasolo I, Andrade F. Solid Lipid NPs: Multitasking Nano-Carriers for Cancer Treatment. Pharmaceutics. 2023;15(3).
  122. Sukumar UK, Bhushan B, Dubey P, Matai I, Sachdev A, Packirisamy G. Emerging applications of NPs for lung cancer diagnosis and therapy. Int Nano Lett. 2013;3(1):1–17.
  123. Rosière R, Van Woensel M, Gelbcke M, Mathieu V, Hecq J, Mathivet T, et al. New Folate-Grafted Chitosan Derivative To Improve Delivery of Paclitaxel-Loaded Solid Lipid NPs for Lung Tumor Therapy by Inhalation. Mol Pharm. 2018;15(3):899–910.
  124. Naseri N, Zakeri P, Hamishehkar H, Pilehvar Y, Valizadeh H. Development, In Vitro Characterization, Antitumor and Aerosol Performance Evaluation of Respirable Prepared by Self-nanoemulsification Method. Drug Res (Stuttg). 2017;67.
  125. Najib Ullah SNM, Afzal O, Altamimi ASA, Alossaimi MA, Almalki WH, Alzahrani A, et al. Bedaquiline-Loaded Solid Lipid NPs Drug Delivery in the Management of Non-Small-Cell Lung Cancer (NSCLC). Pharmaceuticals (Basel). 2023;16(9).
  126. Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid Lipid NPs: Applications and Prospects in Cancer Treatment. Int J Mol Sci. 2023;24(7).
  127. Mittal P, Saharan A, Verma R, Altalbawy FMA, Alfaidi MA, Batiha GES, et al. Dendrimers: A New Race of Pharmaceutical Nanocarriers. Biomed Res Int. 2021;2021:8844030.
  128. Cruz A, Barbosa J, Antunes P, Bonifácio VDB, Pinto SN. A Glimpse into Dendrimers Integration in Cancer Imaging and Theranostics. Int J Mol Sci. 2023;24(6).
  129. Crintea A, Motofelea AC, Șovrea AS, Constantin AM, Crivii CB, Carpa R, et al. Dendrimers: Advancements and Potential Applications in Cancer Diagnosis and Treatment-An Overview. Pharmaceutics. 2023;15(5).
  130. Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SRP. Conjugation to Poly(amidoamine) Dendrimers and Pulmonary Delivery Reduce Cardiac Accumulation and Enhance Antitumor Activity of Doxorubicin in Lung Metastasis. Mol Pharm. 2016;13(7):2363–2375.
  131. Nguyen H, Nguyen NH, Tran NQ, Nguyen CK. Improved Method for Preparing Cisplatin-Dendrimer Nanocomplex and Its Behavior Against NCI-H460 Lung Cancer Cell. J Nanosci Nanotechnol. 2015;15(6):4106–4110.
  132. Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold NPs as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials. 2013;34(2):470–480.
  133. Hsu HJ, Palka-Hamblin H, Bhide GP, Myung JH, Cheong M, Colley KJ, et al. Noncatalytic Endosialidase Enables Surface Capture of Small-Cell Lung Cancer Cells Utilizing Strong Dendrimer-Mediated Enzyme-Glycoprotein Interactions. Anal Chem. 2018;90(6):3670–5.
  134. Zhang WW, Wang YC, Kan XM, Wang XM, Geng DM. Preparation and evaluation of peptide-dendrimer-paclitaxel conjugates for treatment of heterogeneous stage 1 non-small cell lung cancer in 293T and L132 cell lines. Trop J Pharm Res. 2017;16(4):737–42.
  135. Ryan GM, Kaminskas LM, Bulitta JB, McIntosh MP, Owen DJ, Porter CJH. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. J Control release Off J Control Release Soc. 2013;172(1):128–36.
  136. Soni N, Jain K, Gupta U, Jain N. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers. J Nanoparticle Res. 2015;17.
  137. Ren L, Wang L, Rehberg M, Stoeger T, Zhang J, Chen S. Applications and Immunological Effects of Quantum Dots on Respiratory System. Front Immunol. 2022;12(January):1–10.
  138. Hamidu A, Pitt WG, Husseini GA. Recent Breakthroughs in Using Quantum Dots for Cancer Imaging and Drug Delivery Purposes. Nanomater (Basel, Switzerland). 2023;13(18).
  139. Nabil M, Megahed F. Quantum Dot Nanomaterials: Preparation, Characterization, Advanced Bio-Imaging and Therapeutic Applications. J Fluoresc. 2023;
  140. Liu L, Wu S, Jing F, Zhou H, Jia C, Li G, et al. Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels. Biosens Bioelectron. 2016;80:300–306.
  141. Huang X, Chen Q, Li X, Lin C, Wang K, Luo C, et al. CKAP4 Antibody-Conjugated Si Quantum Dot Micelles for Targeted Imaging of Lung Cancer. Nanoscale Res Lett. 2021;16(1):124.
  142. Lima-Tenório MK, Pineda EAG, Ahmad NM, Fessi H, Elaissari A. Magnetic NPs: In vivo cancer diagnosis and therapy. Int J Pharm. 2015;493(1–2):313–327.
  143. Fathi Karkan S, Mohammadhosseini M, Panahi Y, Milani M, Zarghami N, Akbarzadeh A, et al. Magnetic NPs in cancer diagnosis and treatment: a review. Artif cells, nanomedicine, Biotechnol. 2017;45(1):1–5.
  144. Alromi DA, Madani SY, Seifalian A. Emerging Application of Magnetic NPs for Diagnosis and Treatment of Cancer. Polymers (Basel). 2021;13(23).
  145. Hosu O, Tertis M, Cristea C. Implication of magnetic NPs in cancer detection, screening and treatment. Magnetochemistry. 2019;5(4).
  146. Saadat M, Manshadi MKD, Mohammadi M, Zare MJ, Zarei M, Kamali R, et al. Magnetic particle targeting for diagnosis and therapy of lung cancers. J Control release Off J Control Release Soc. 2020;328:776–91.
  147. McEver RP, Luscinskas FW. Cell Adhesion. Hematol Basic Princ Pract. 2017;70:127–134.
  148. Tseng CL, Chang KC, Yeh MC, Yang KC, Tang T, Lin FH. Development of a dual-functional Pt–Fe-HAP magnetic NPs application for chemo-hyperthermia treatment of cancer. Ceram Int. 2014;40:5117–5127.
  149. Ma J, Zhang Z, Zhang Z, Huang J, Qin Y, Li X, et al. Magnetic nanoparticle clusters radiosensitise human nasopharyngeal and lung cancer cells after alternating magnetic field treatment. Int J Hyperth Off J Eur Soc Hyperthermic Oncol North Am Hyperth Gr. 2015;31(7):800–812.
  150. Baskar G, Ravi M, Panda JJ, Khatri A, Dev B, Santosham R, et al. Efficacy of Dipeptide-Coated Magnetic NPs in Lung Cancer Models Under Pulsed Electromagnetic Field. Cancer Invest. 2017;35(6):431–442.
  151. Araya T, Kasahara K, Nishikawa S, Kimura H, Sone T, Nagae H, et al. Antitumor effects of inductive hyperthermia using magnetic ferucarbotran NPs on human lung cancer xenografts in nude mice. Onco Targets Ther. 2013;6:237–242.
  152. Xiao X, Teng F, Shi C, Chen J, Wu S, Wang B, et al. Polymeric NPs—Promising carriers for cancer therapy. Front Bioeng Biotechnol. 2022;10(October):1–20.
  153. Tosi G, Bortot B, Ruozi B, Dolcetta D, Vandelli MA, Forni F, et al. Potential use of polymeric NPs for drug delivery across the blood-brain barrier. Curr Med Chem. 2013;20(17):2212–2225.
  154. Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric NPs-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat. 2023;22:15330338231152084.
  155. Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, et al. Biodegradable Polymeric NPs for Drug Delivery to Solid Tumors. Front Pharmacol. 2021;12:601626.
  156. Jiang ZM, Dai SP, Xu YQ, Li T, Xie J, Li C, et al. Crizotinib-loaded polymeric NPs in lung cancer chemotherapy. Med Oncol. 2015;32(7):193.
  157. Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol Off J Eur Soc Med Oncol. 2007;18(12):2009–2014.
  158. Wang W, Xi M, Duan X, Wang Y, Kong F. Delivery of baicalein and paclitaxel using self-assembled NPs: synergistic antitumor effect in vitro and in vivo. Int J Nanomedicine. 2015;10:3737–3750.
  159. Perumal S, Atchudan R, Lee W. A Review of Polymeric Micelles and Their Applications. Polymers (Basel). 2022;14(12).
  160. Kaur J, Gulati M, Jha NK, Disouza J, Patravale V, Dua K, et al. Recent advances in developing polymeric micelles for treating cancer: Breakthroughs and bottlenecks in their clinical translation. Drug Discov Today. 2022;27(5):1495–1512.
  161. Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals (Basel). 2023;16(3).
  162. Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;15(4):862–871.
  163. Jin GW, Rejinold NS, Choy JH. Multifunctional Polymeric Micelles for Cancer Therapy. Polymers (Basel). 2022;14(22).
  164. Guthi JS, Yang SG, Huang G, Li S, Khemtong C, Kessinger CW, et al. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm. 2010;7(1):32–40.
  165. Zhang Q, Bao J, Duan T, Hu M, He Y, Wang J, et al. Nanomicelle-Microsphere Composite as a Drug Carrier to Improve Lung-Targeting Specificity for Lung Cancer. Pharmaceutics. 2022;14(3).
  166. Sharma M, Alessandro P, Cheriyamundath S, Lopus M. Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges. J Drug Target. 2024;32(3):287–299.
  167. Gao S, Xu B, Sun J, Zhang Z. Nanotechnological advances in cancer: therapy a comprehensive review of carbon nanotube applications. Front Bioeng Biotechnol. 2024;12(March):1–17.
  168. Luanpitpong S, Wang L, Rojanasakul Y. The effects of carbon nanotubes on lung and dermal cellular behaviors. Nanomedicine (Lond). 2014;9(6):895–912.
  169. Arya N, Arora A, Vasu KS, Sood AK, Katti DS. Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: a reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale (Internet). 2013;5(7):2818–2829.
  170. Yu B, Tan L, Zheng R, Tan H, Zheng L. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mater Sci Eng C Mater Biol Appl. 2016;68:579–584.
  171. Zakaria AB, Picaud F, Rattier T, Pudlo M, Dufour F, Saviot L, et al. Nanovectorization of TRAIL with single wall carbon nanotubes enhances tumor cell killing. Nano Lett. 2015;15(2):891–895.
  172. Al Faraj A, Shaik A, Halwani R, Alfuraih A. Magnetic Targeting and Delivery of Drug-Loaded SWCNTs Theranostic Nanoprobes to Lung Metastasis in Breast Cancer Animal Model: Noninvasive Monitoring Using Magnetic Resonance Imaging. Mol Imaging Biol. 2015;1–10.
  173. Singh N, Sachdev A, Gopinath P. Polysaccharide Functionalized Single Walled Carbon Nanotubes as Nanocarriers for Delivery of Curcumin in Lung Cancer Cells. J Nanosci Nanotechnol. 2018;18(3):1534–1541.
  174. Cao Y, Huang HY, Chen LQ, Du HH, Cui JH, Zhang LW, et al. Enhanced Lysosomal Escape of pH-Responsive Polyethylenimine-Betaine Functionalized Carbon Nanotube for the Codelivery of Survivin Small Interfering RNA and Doxorubicin. ACS Appl Mater Interfaces. 2019;11(10):9763–9776.
  175. Razzazan A, Atyabi F, Kazemi B, Dinarvand R. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater Sci Eng C Mater Biol Appl. 2016;62:614–625.
  176. Guo C, Al-Jamal WT, Toma FM, Bianco A, Prato M, Al-Jamal KT, et al. Design of Cationic Multiwalled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication. Bioconjug Chem. 2015;26(7):1370–1379.
  177. Salas-Treviño D, Saucedo-Cárdenas O, De Jesús Loera-Arias M, Rodríguez-Rocha H, García-García A, Montes-De-Oca-Luna R, et al. Hyaluronate functionalized multi-wall carbon nanotubes filled with carboplatin as a novel drug nanocarrier against murine lung cancer cells. Nanomaterials. 2019;9(11).
  178. Lodhi N, Mehra NK, Jain NK. Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J Drug Target. 2013;21(1):67–76.
  179. Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine. 2016;11:5163–5185.
  180. Cirillo G, Vittorio O, Kunhardt D, Valli E, Voli F, Farfalla A, et al. Combining carbon nanotubes and chitosan for the vectorization of methotrexate to lung cancer cells. Materials (Basel). 2019;12(18):1–14.
  181. Li J, Pant A, Chin CF, Ang WH, Ménard-Moyon C, Nayak TR, et al. In vivo biodistribution of platinum-based drugs encapsulated into multi-walled carbon nanotubes. Nanomedicine. 2014;10(7):1465–75.
  182. Tan JM, Karthivashan G, Arulselvan P, Fakurazi S, Hussein MZ. Characterization and in vitro studies of the anticancer effect of oxidized carbon nanotubes functionalized with betulinic acid. Drug Des Devel Ther. 2014;8:2333–2343.
  183. Singh RP, Sharma G, Sonali, Singh S, Patne SCU, Pandey BL, et al. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater Sci Eng C Mater Biol Appl. 2016;67:313–25.
  184. Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, et al. Carbon nanotubes: Smart drug/gene delivery carriers. Int J Nanomedicine. 2021;16:1681–1706.
  185. Heger Z, Polanska H, Krizkova S, Balvan J, Raudenska M, Dostalova S, et al. Co-delivery of VP-16 and Bcl-2-targeted antisense on PEG-grafted oMWCNTs for synergistic in vitro anti-cancer effects in non-small and small cell lung cancer. Colloids Surf B Biointerfaces. 2017;150:131–140.
  186. Kass LE, Nguyen J. Nanocarrier-hydrogel composite delivery systems for precision drug release. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(2):e1756.
  187. Chyzy A, Tomczykowa M, Plonska-Brzezinska ME. Hydrogels as potential nano-, micro- and macro-scale systems for controlled drug delivery. Materials (Basel). 2020;13(1):188.
  188. Lee P, Lok CN, Che CM, Kao WJ. A Multifunctional Hydrogel Delivers Gold Compound and Inhibits Human Lung Cancer Xenograft. Pharm Res. 2019;36(4):61.
  189. Zubris KA V, Colson YL, Grinstaff MW. Hydrogels as intracellular depots for drug delivery. Mol Pharm. 2012;9(1):196–200.
  190. Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P, et al. Mechanisms of silk fibroin sol-gel transitions. J Phys Chem B. 2006;110(43):21630–8.
  191. Jacob S, Nair A, Shah J, Sreeharsha N, Gupta S, Pottathil S. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics. 2021;13:357.
  192. Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, et al. Gold NPs (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci. 2024;25(7).
  193. Sengupta A, Azharuddin M, Al-Otaibi N, Hinkula J. Efficacy and Immune Response Elicited by Gold Nanoparticle- Based Nanovaccines against Infectious Diseases. Vaccines. 2022;10(4).
  194. Jain S, Hirst DG, O’Sullivan JM. Gold NPs as novel agents for cancer therapy. Br J Radiol. 2012;85(1010):101–13.
  195. Thambiraj S, Shruthi S, Vijayalakshmi R, Ravi Shankaran D. Evaluation of cytotoxic activity of docetaxel loaded gold NPs for lung cancer drug delivery. Cancer Treat Res Commun. 2019;21:100157.
  196. Kumari V, Vishwas S, Kumar R, Kakoty V, Khursheed R, Babu M, et al. Anoverview of biomedical applications for gold NPs against lung cancer. J Drug Deliv Sci Technol. 2023;86:104729.
  197. Bardoliwala D, Javia A, Ghosh S, Misra A, Sawant K. Formulation and clinical perspectives of inhalation-based nanocarrier delivery: a new archetype in lung cancer treatment. Ther Deliv. 2021;12(5):397–418.
  198. Gupta C, Jaipuria A, Gupta N. Inhalable Formulations to Treat Non-Small Cell Lung Cancer (NSCLC): Recent Therapies and Developments. Pharmaceutics. 2023;15(1).
  199. Al Khatib AO, El-Tanani M, Al-Obaidi H. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics. 2023;15(12).
  200. Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med. 2014;11(1):44–55.
  201. Yu XY, Jin X, Shou ZX. Surface-engineered smart nanocarrier-based inhalation formulations for targeted lung cancer chemotherapy: a review of current practices. Drug Deliv. 2021;28(1):1995–2010.
  202. Choi SH, Byeon HJ, Choi JS, Thao L, Kim I, Lee ES, et al. Inhalable self-assembled albumin NPs for treating drug-resistant lung cancer. J Control release Off J Control Release Soc. 2015;197:199–207.
  203. Pontes JF, Grenha A. Multifunctional Nanocarriers for Lung Drug Delivery. Nanomater (Basel, Switzerland). 2020;10(2).
  204. Aryal S, Park S, Park H, Park C, Kim WC, Thakur D, et al. Clinical Trials for Oral, Inhaled and Intravenous Drug Delivery System for Lung Cancer and Emerging Nanomedicine-Based Approaches. Int J Nanomedicine. 2023;18:7865–7888.
  205. Walker JF, Yu J. A direct injection technique for investigation of lung sensory properties and reflex functions. Exp Physiol. 2021;106(7):1449–1459.
  206. Huang TT, Parab S, Burnett R, Diago O, Ostertag D, Hofman FM, et al. Intravenous administration of retroviral replicating vector, Toca 511, demonstrates therapeutic efficacy in orthotopic immune-competent mouse glioma model. Hum Gene Ther. 2015;26(2):82–93.
  207. Leijen S, Burgers SA, Baas P, Pluim D, Tibben M, van Werkhoven E, et al. Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Invest New Drugs. 2015;33(1):201–14.
  208. Wu L, Leng D, Cun D, Foged C, Yang M. Advances in combination therapy of lung cancer: Rationales, delivery technologies and dosage regimens. J Control release Off J Control Release Soc. 2017;260:78–91.
  209. Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. Nanomater (Basel, Switzerland). 2022;12(15).
  210. Cui T, Sihao Z, Sun H. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted NPs for breast cancer treatment. Oncol Rep. 2017;37(2):1253–1260.
  211. Zheng HR, Jiang AM, Gao H, Liu N, Zheng XQ, Fu X, et al. The efficacy and safety of anlotinib combined with platinum-etoposide chemotherapy as first-line treatment for extensive-stage small cell lung cancer: A Chinese multicenter real-world study. Front Oncol. 2022;12:894835.
  212. Carrick S, Parker S, Thornton CE, Ghersi D, Simes J, Wilcken N. Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev. 2009;2009(2):CD003372.
  213. Cancer Nano-Therapies in the Clinic and Clinical Trials - NCI.
  214. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.
  215. Lv Y, Zou Y, Yang L. Feasibility study for thermal protection by microencapsulated phase change micro/NPs during cryosurgery. Chem Eng Sci. 2011;66:3941–3953.
  216. Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. Adv Mater. 2020;32(40):e2002054.
  217. Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Robert J. in vivo gene silencing. 2010;107(5):2–7.
  218. Babu A, Templeton A, Munshi A, Ramesh R. Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges. J Nanomater. 2013;2013:1–11.
  219. Sharma A, Tonk R, Shekhar R, Dohare S, Kumar D. Need to focus on inhibitory activity of benzimidazole analogues against indolamine 2,3-dioxygenase-1 (IDO-1). EXCLI J. 2022;21:904–905.
  220. Xie L, Xie D, Du Z, Xue S, Wang K, Yu X, et al. A novel therapeutic outlook: Classification, applications and challenges of inhalable micron/nanoparticle drug delivery systems in lung cancer (Review). Int J Oncol. 2024;64(4).