Eudragit RS100 nanoparticles for sustained release of Cefpodoxime Proxetil: preparation, pharmaceutical characterization, and in-vitro drug release studies

Document Type : Research Paper

Authors

1 Department of Pharmacy, School of Healthcare and Allied Sciences, GD Goenka University, Sohna, Gurugram Road, Haryana, India

2 Department of Pharmacy, Guru Teg Bahadur Hospital, Dilshad Garden, Delhi, India

Abstract

Objective(s): The primary objective of this study was to develop a sustained-release formulation of cefpodoxime proxetil (CP) using the polymer Eudragit RS 100 (ERS100).
Materials and Methods: Pluronic F127 (PF127) was incorporated as an amphiphilic surfactant to enhance product stability. Preformulation evaluations, including UV-visible spectroscopy and Fourier-transform infrared spectroscopy (FTIR), were performed to assess the compatibility of the drug, polymer, and their 1:1 mixture. Nanoparticles were formulated using the solvent evaporation technique, followed by continuous stirring of the emulsion during the removal of the organic solvent.
Results: The optimized formulation exhibited a particle size of less than 200 nm and an entrapment efficiency of 81.45 ± 0.891% for CP. In vitro drug release studies revealed sustained-release behavior, with the release kinetics best fitting the Higuchi (R² = 0.9757) and Hixson–Crowell (R² = 0.9707) models. Stability studies confirmed compliance with ICH guidelines regarding temperature and humidity conditions. These findings underscore the potential of CP-loaded nanoparticles as efficient carriers for sustained drug delivery, particularly targeting lung tissues.
Conclusion: The developed ERS100-based CP nanoparticles offer promising therapeutic benefits, including improved patient adherence through extended drug release intervals.

Keywords


  1. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101-124.
  2. Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, Alcudia A. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials (Basel). 2020;10(7):1403.
  3. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731.
  4. Iqbal O, Shah S, Abbas G, Rasul A, Hanif M, Ashfaq M, et al. Moxifloxacin loaded nanoparticles of disulfide bridged thiolated chitosan-eudragit RS100 for controlled drug delivery. Int J Biol Macromol. 2021;182:2087-2096.
  5. Cortesi R, Ravani L, Menegatti E, Esposito E, Ronconi F. Eudragit(®) microparticles for the release of budesonide: a comparative study. Indian J Pharm Sci. 2012;74(5):415-421.
  6. Akash MS, Rehman K. Recent progress in biomedical applications of pluronic (PF127): pharmaceutical perspectives. J Control Release. 2015;209:120-138.
  7. Nedelcu A, Mosteanu O, Pop T, Mocan T, Mocan L. Recent advances in nanoparticle-mediated treatment of inflammatory bowel diseases. Applied Sciences. 2021;11(1):438.
  8. Geddes AM. Cefpodoxime proxetil in the treatment of lower respiratory tract infections. Drugs. 1991;42 Suppl 3:34-40.
  9. Fulton B, Perry CM. Cefpodoxime proxetil: a review of its use in the management of bacterial infections in paediatric patients. Paediatr Drugs. 2001;3(2):137-158.
  10. Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev. 2014;78:63-76.
  11. Huh AJ, Kwon YJ. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128-145.
  12. Chu L, Gao H, Cheng T, Zhang Y, Liu J, Huang F, et al. A charge-adaptive nanosystem for prolonged and enhanced in vivo antibiotic delivery. Chem Commun (Camb). 2016;52(37):6265-6268.
  13. Sharma A, Keservani R, Dadarwal S, Choudhary Y, Ramteke S. Formulation and in vitro characterization of cefpodoxime proxetil gastroretentive microballoons. Daru. 2011;19(1):33-40.
  14. Malik A, Parveen S, Ahamad T, Alshehri SM, Singh PK, Nishat N. Coordination polymer: synthesis, spectral characterization and thermal behaviour of starch-urea based biodegradable polymer and its polymer metal complexes. Bioinorg Chem Appl. 2010;2010:848130.
  15. Asnani G, Jadhav K, Dhamecha D, Sankh A, Patil M. Development and validation of spectrophotometric method of cefpodoxime proxetil using hydrotropic solubilizing agents. Pharm Methods. 2012;3(2):117-120.
  16. Veseli A, Žakelj S, Kristl A. A review of methods for solubility determination in biopharmaceutical drug characterization. Drug Dev Ind Pharm. 2019;45(11):1717-1724.
  17. Bannan CC, Calabró G, Kyu DY, Mobley DL. Calculating partition coefficients of small molecules in octanol/water and cyclohexane/water. J Chem Theory Comput. 2016;12(8):4015-4024.
  18. Mostafa GAE, Al-Otaibi YH, Al-Badr AA. Cefpodoxime proxetil. Profiles Drug Subst Excip Related Methodol. 2019;44:1-165.
  19. Jana U, Mohanty AK, Manna PK, Mohanta GP. Preparation and characterization of nebivolol nanoparticles using Eudragit® RS100. Colloids Surf B Biointerfaces. 2014;113:269-275.
  20. Adibkia K, Javadzadeh Y, Dastmalchi S, Mohammadi G, Niri FK, Alaei-Beirami M. Naproxen-eudragit RS100 nanoparticles: preparation and physicochemical characterization. Colloids Surf B Biointerfaces. 2011;83(1):155-159.
  21. Yadav B, Chauhan M, Sonali, Dinkar R, Shekhar S, Monika, et al. In silico modeling, development, characterization, in-vitro cytotoxicity, pharmacokinetic, and toxicological studies of folate-receptor targeted micelles containing cisplatin and upconversion nanoparticles for lung cancer therapy. Mater Today Commun. 2024;39:109007.
  22. Vaculikova E, Placha D, Pisarcik M, Peikertova P, Dedkova K, Devinsky F, et al. Preparation of risedronate nanoparticles by solvent evaporation technique. Molecules. 2014;19(11):17848-17861.
  23. Anjum MM, Patel KK, Dehari D, Pandey N, Tilak R, Agrawal AK, et al. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: chitosan and DNase coating improves antimicrobial activity. Drug Deliv Transl Res. 2021;11(1):305-317.
  24. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci. 2017;12(1):1-14.
  25. Pawar P, Duduskar A, Waydande S. Design and evaluation of Eudragit RS-100 based itraconazole nanosuspension for ophthalmic application. Curr Drug Res Rev. 2021;13(1):36-48.
  26. Katara R, Majumdar DK. Eudragit RL 100-based nanoparticulate system of aceclofenac for ocular delivery. Colloids Surf B Biointerfaces. 2013;103:455-462.
  27. Chauhan M, Sonali, Shekhar S, Yadav B, Garg V, Dutt R, et al. AS1411 aptamer/RGD dual functionalized theranostic chitosan-PLGA nanoparticles for brain cancer treatment and imaging. Biomater Adv. 2024;160:213833.
  28. Shafiei F, Ghavami-Lahiji M, Jafarzadeh Kashi TS, Najafi F. Drug release kinetics and biological properties of a novel local drug carrier system. Dent Res J (Isfahan). 2021;18:94.
  29. Bhasarkar J, Bal D. Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids. J Appl Biomater Funct Mater. 2019;17(2):2280800018817462.
  30. Jeyamohan P, Hasumura T, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int J Nanomedicine. 2013;8:2653-2667.
  31. Zhang S, Wang C. Precise Analysis of nanoparticle size distribution in TEM image. Methods Protoc. 2023;6(4):63.
  32. Poidevin C, Paciok P, Heggen M, Auer AA. High resolution transmission electron microscopy and electronic structure theory investigation of platinum nanoparticles on carbon black. J Chem Phys. 2019;150(4):041705.
  33. Yenilmez E. Desloratadine-eudragit® RS100 nanoparticles: formulation and characterization. Turk J Pharm Sci. 2017;14(2):148-156.
  34. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci. 2017;12(1):1-14.
  35. Khan F, Katara R, Ramteke S. Enhancement of bioavailability of cefpodoxime proxetil using different polymeric microparticles. AAPS PharmSciTech. 2010;11(3):1368-1375.
  36. Işık M, Levorse D, Mobley DL, Rhodes T, Chodera JD. Octanol-water partition coefficient measurements for the SAMPL6 blind prediction challenge. J Comput Aided Mol Des. 2020;34(4):405-420.
  37. Heredia NS, Vizuete K, Flores-Calero M, Pazmiño V K, Pilaquinga F, Kumar B, Debut A. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS One. 2022;17(3):e0264825.
  38. Kaegi R, Fierz M, Hattendorf B. Quantification of Nanoparticles in Dispersions Using Transmission Electron Microscopy. Microsc Microanal. 2021:1-9.
  39. Kamiya M, Matsumoto M, Yamashita K, Izumi T, Kawaguchi M, Mizukami S, Tsurumaru M, Mukai H, Kawakami S. Stability Study of mRNA-Lipid Nanoparticles Exposed to Various Conditions Based on the Evaluation between Physicochemical Properties and Their Relation with Protein Expression Ability. Pharmaceutics. 2022;14(11):2357.
  40. Phan HT, Haes AJ. What does nanoparticle stability mean? J Phys Chem C Nanomater Interfaces. 2019;123(27):16495-16507.
  41. Sharma A, Keservani R, Dadarwal S, Choudhary Y, Ramteke S. Formulation and in vitro characterization of cefpodoxime proxetil gastroretentive microballoons. Daru.;19(1):33-40.
  42. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429-444.
  43. Dikpati A, Maio VDP, Ates E, Greffard K, Bertrand N. Studying the stability of polymer nanoparticles by size exclusion chromatography of radioactive polymers. J Control Release. 2024;369:394-403.
  44. Chauhan M, Sonali, Shekhar S, Yadav B, Garg V, Dutt R, et al. AS1411 aptamer/RGD dual functionalized theranostic chitosan-PLGA nanoparticles for brain cancer treatment and imaging. Biomater Adv. 2024;160:213833.
  45. Singh RP, Sonali. Current Trends and Challenges in Targeting Tumor Mitochondrial Glycolysis and Oxidative Phosphorylation Pathways for Cancer Therapy. Curr Protein Pept Sci. 2025;26(1):2-5.
  46. Chauhan M, Singh RP, Sonali, Yadav B, Shekhar S, Kumar L, Mehata AK, Jhawat V, Dutt R, Garg V, Kailashiya V, Muthu MS. Dual-targeted transferrin and AS1411 aptamer conjugated micelles for improved therapeutic efficacy and imaging of brain cancer. Colloids Surf B Biointerfaces. 2023;231:113544.