siRNA-FAM and Paclitaxel delivery to MCF-7 cells via folic acid-PLA-Spermine-PEG-Fe 3 O 4 nanoparticles

Document Type : Research Paper

Authors

1 Department of Chemistry, Ard.C., Islamic Azad University, Ardabil, Iran.

2 Department of Biology, Ard.C., Islamic Azad University, Ardabil, Iran.

Abstract

Objective(s): An effective targeted cancer therapy should maximize drug accumulation within tumors while minimizing off-target effects on healthy tissues. Folate receptors, frequently overexpressed in various malignancies, render folic acid a promising targeting ligand for nanoparticle-mediated drug delivery.
Materials and Methods: For this study, folic acid (FA)-modified PLA-spermine-PEG-Fe₃O₄ nanoparticles were synthesized. These multifunctional nanoparticles were employed for the co-delivery of siRNA and paclitaxel (PTX) to targeted sites. The structural and morphological properties of the fabricated nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS).
Results: TGA and FTIR analyses confirmed the successful synthesis of the PLA-spermine-PEG-FA (FPSP) copolymer. TEM and SEM imaging revealed that the FPSPFe/siRNA-FAM/PTX micelles possessed a smooth, spherical morphology. Additionally, VSM measurements indicated that the micelles exhibited suitable magnetic properties at room temperature. The drug release behavior of the FPSPFe/siRNA-FAM/PTX micelles was evaluated under both neutral and acidic conditions, demonstrating accelerated release under acidic pH conditions. The MTT assay demonstrated good biocompatibility of the micelles, while flow cytometry confirmed their ability to effectively deliver siRNA-FAM and PTX.
Conclusion: The results demonstrated the high efficiency of FPSPFe/siRNA-FAM/PTX micelles in delivering both PTX and siRNA-FAM to MCF-7 cancer cells simultaneously.

Keywords


  1. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022;66:15-23.
  2. Organization WH. Breast Cancer 2024 [Available from:https://www.who.int/news-room/fact-sheets/detail/breast-cancer.
  3. Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in cancer diagnosis and treatment. Pharmaceutics. 2023;15(3):1025.
  4. Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis. 2023;28(1):20-38.
  5. Raj S, Khurana S, Choudhari R, Kesari KK, Kamal MA, Garg N, Ruokolainen J, Das BC, Kumar D, editors. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Seminars in cancer biology; 2021: Elsevier.
  6. Bourang S, Jahanbakhsh Godehkahriz S, Noruzpour M, Asghari Zakaria R, Granados-Principal S. Anticancer properties of copolymer nanoparticles loaded with Foeniculum vulgare derivatives in Hs578T and SUM159 cancer cell lines. Cancer Nanotechnol. 2025;16(1):1-28.
  7. Wang J, Zhuang S. Chitosan-based materials: Preparation, modification and application. J Clean Prod. 2022;355:131825.
  8. Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. Naunyn Schmiedebergs Arch Pharmacol. 2024:1-47.
  9. Ucal S. Polyamine analogues as anticancer agents: Itä-Suomen yliopisto; 2017.
  10. Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: functions, metabolism, and role in human disease management. Med Sci. 2021;9(2):44.
  11. Ghasemi S, Owrang M, Javaheri F, Farjadian F. Spermine modified PNIPAAm nano-hydrogel serving as thermo-responsive system for delivery of cisplatin. Macromol Res. 2022;30(5):314-324.
  12. Abri N, Vasheghani-Farahani E, Shaki H, Ganji F, Jafarzadeh-Holahg S. Magnetic dextran-spermine nanoparticles as pH-sensitive carriers for antibiotic delivery. J Nanopart Res. 2024;26(4):73.
  13. Mohajeri S, Yaghoubi H, Bourang S, Noruzpour M. Multifunctional magnetic nanocapsules for dual delivery of siRNA and chemotherapy to MCF-7 cells (Breast cancer cells). Naunyn Schmiedebergs Arch Pharmacol. 2025; 27:1-23.
  14. Jin Y, Wang X, Kromer AP, Müller JT, Zimmermann C, Xu Z, Hartschuh A, Adams F, Merkel OM. Role of Hydrophobic Modification in Spermine-Based Poly (β-amino ester) s for siRNA Delivery and Their Spray-Dried Powders for Inhalation and Improved Storage. Biomacromolecules. 2024.
  15. Scott AM, Zhang Z, Jia L, Li K, Zhang Q, Dexheimer T, Ellsworth E, Ren J, Chung-Davidson Y-W, Zu Y. Spermine in semen of male sea lamprey acts as a sex pheromone. PLoS Biol. 2019;17(7):e3000332.
  16. Zou W, Liu C, Chen Z, Zhang N. Preparation and characterization of cationic PLA-PEG nanoparticles for delivery of plasmid DNA. Nanoscale Res Lett. 2009;4:982-92.
  17. Mundel R, Thakur T, Chatterjee M. Emerging uses of PLA–PEG copolymer in cancer drug delivery. 3 Biotech. 2022;12(2):41.
  18. Chung S, Sugimoto Y, Huang J, Zhang M. Iron oxide nanoparticles decorated with functional peptides for a targeted siRNA delivery to glioma cells. ACS Appl Mater Interfaces. 2022;15(1):106-119.
  19. Noruzpuor M, Asghari Zakaria R, Zare N, Ebrahimi HA, Parsa H, Bourang S. Green synthesis of metal nanoparticles using aqueous extract of Moringa oleifera L. and investigating their antioxidant and antibacterial properties. Appl Chem Today. 2024;19(71):283-302.
  20. Bourang S, Asadian S, Noruzpour M, Mansuryar A, Azizi S, Ebrahimi HA, Amani Hooshyar V. PLA-HA/Fe3O4 magnetic nanoparticles loaded with curcumin: physicochemical characterization and toxicity evaluation in HCT116 colorectal cancer cells. Discov appl sci. 2024;6(4):186.
  21. Noruzpour M, Zakaria RA, Zare N, Bourang S, Ebrahimi HA, Granados-Principal S. Delivery of Moringa oleifera Extract via PLA-PEG-FA/Chitosan-PLA NPs into Breast Cancer Cell Lines. Bio Nano Science. 2025;15(2):287.
  22. Asghari Zakaria R, Zare N, Ebrahimi HA, Parsa H, Bourang S. Investigating the anticancer properties of the essential oil and aqueous extract of Moringa oleifera and its biosynthesized metal nanoparticles on MCF-7 and BT-549 cell lines. IJBD. 2024;17(1):59-83.
  23. Gangopadhyay S, Nikam RR, Gore KR. Folate receptor-mediated siRNA delivery: recent developments and future directions for RNAi therapeutics. Nucleic Acid Ther. 2021;31(4):245-70.
  24. Salim L, Desaulniers J-P. To conjugate or to package? A look at targeted siRNA delivery through folate receptors. Nucleic Acid Ther. 2021;31(1):21-38.
  25. Narayanan KB, Bhaskar R, Han SS. Recent advances in the biomedical applications of functionalized nanogels. Pharmaceutics. 2022;14(12):2832.
  26. Cavallaro G, Sardo C, Craparo EF, Porsio B, Giammona G. Polymeric nanoparticles for siRNA delivery: Production and applications. Int J Pharm. 2017;525(2):313-33.
  27. Dastgerdi NK, Dastgerdi NK, Bayraktutan H, Costabile G, Atyabi F, Dinarvand R, Longobardi G, Alexander C, Conte C. Enhancing siRNA cancer therapy: Multifaceted strategies with lipid and polymer-based carrier systems. Int J Pharm. 2024:124545.
  28. Yaghoubi H, Eskanlou H, Danandeh Baghrabad M, Farazi N, Nedaee Shakarab B. Preparation and evaluation of anti-cancer effects of targeted polymer nano particles containing paclitaxel and siRNA in MCF-7 breast cancer cell line. Cellular and Molecular Research (Iranian Journal of Biology). 2023.
  29. Amani A, Dustparast M, Noruzpour M, Zakaria RA, Ebrahimi HA. Design and invitro characterization of green synthesized magnetic nanoparticles conjugated with multitargeted poly lactic acid copolymers for co-delivery of siRNA and paclitaxel. Eur J Pharm Sci. 2021;167:106007.
  30. Noruzpour M, Zakaria RA, Zare N, Bourang S, Ebrahimi HA, Granados-Principal S. Delivery of Moringa oleifera extract via PLA-PEG-FA/chitosan-PLA NPs into breast cancer cell lines. Bionanoscience. 2025;15(2):287.
  31. Haddad R, Alrabadi N, Altaani B, Li T. Paclitaxel drug delivery systems: Focus on nanocrystals’ surface modifications. Polymers. 2022;14(4):658.
  32. Kumar K, Rani V, Mishra M, Chawla R. New paradigm in combination therapy of siRNA with chemotherapeutic drugs for effective cancer therapy. Curr Res Pharmacol Drug Discov. 2022;3:100103.
  33. Xue R, Pan Y, Xia L, Li J. Non-viral vectors combined delivery of siRNA and anti-cancer drugs to reverse tumor multidrug resistance. Biomed. Pharmacother. 2024;178:117119.
  34. Bourang S, Jahanbakhsh Godehkahriz S, Asghari Zakaria R, Parsa H, Noruzpuor M. Green synthesis of iron oxide, copper, zinc oxide and silver nanoparticles from aqueous extract of F. vulgare and evaluation of their structural and antimicrobial properties. Agric Biotechnol. 2024;16(3):60-88.
  35. Yusefi M, Shameli K, Su Yee O, Teow S-Y, Hedayatnasab Z, Jahangirian H, Webster TJ, Kuča K. Green synthesis of Fe3O4 nanoparticles stabilized by a Garcinia mangostana fruit peel extract for hyperthermia and anticancer activities. Int J Nanomedicine. 2021:2515-2532.
  36. Abebe DG, Kandil R, Kraus T, Elsayed M, Merkel OM, Fujiwara T. Three‐layered biodegradable micelles prepared by two‐step self‐assembly of PLA‐PEI‐PLA and PLA‐PEG‐PLA triblock copolymers as efficient gene delivery system. Macromol Biosci. 2015;15(5):698-711.
  37. Afrouz M, Ahmadi-Nouraldinvand F, Ajirlu YY, Arabnejad F, Eskanlou H, Yaghoubi H. Preparation and characterization of PLA-PEG/Chitosan-FA/DNA for gene transfer to MCF-7 cells. Med. Drug Discov. 2022;15:100138.
  38. Bourang S, Noruzpour M, Azizi S, Yaghoubi H, Ebrahimi HA. Synthesis and in vitro characterization of PCL-PEG-HA/FeCo magnetic nanoparticles encapsulating curcumin and 5-FU. Nanomed J. 2024;11(2).
  39. Solano-Gálvez SG, Abadi-Chiriti J, Gutiérrez-Velez L, Rodríguez-Puente E, Konstat-Korzenny E, Álvarez-Hernández D-A, Franyuti-Kelly G, Gutiérrez-Kobeh L, Vázquez-López R. Apoptosis: activation and inhibition in health and disease. Med Sci. 2018;6(3):54.
  40. Calahorra J, Blaya-Cánovas JL, Castellini-Pérez O, Aparicio-Puerta E, Cives-Losada C, Marin JJ, Rementeria M, Cara FE, López-Tejada A, Griñán-Lisón C. Unlocking the effective alliance of β-lapachone and hydroxytyrosol against triple-negative breast cancer cells. Biomed Pharmacother. 2024;174:116439.
  41. Mokhtarieh AA, Lee J, Kim S, Lee MK. Preparation of siRNA encapsulated nanoliposomes suitable for siRNA delivery by simply discontinuous mixing. BBA-Biomembranes. 2018;1860(6):1318-1325.
  42. Le-Vinh B, Le N-MN, Nazir I, Matuszczak B, Bernkop-Schnürch A. Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. Int J Biol Macromol. 2019;133:647-655.
  43. Martinez-Morales F, Alonso-Castro AJ, Zapata-Morales JR, Carranza-Álvarez C, Aragon-Martinez OH. Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. Chem Pap. 2020;74:3325-34.
  44. González-Larraza PG, López-Goerne TM, Padilla-Godínez FJ, González-López MA, Hamdan-Partida A, Gómez E. IC50 evaluation of platinum nanocatalysts for cancer treatment in fibroblast, HeLa, and DU-145 cell lines. ACS omega. 2020;5(39):25381-25389.
  45. Mohammed A-SY, Dyab AK, Taha F, Abd El-Mageed AI. Encapsulation of folic acid (vitamin B9) into sporopollenin microcapsules: Physico-chemical characterisation, in vitro controlled release and photoprotection study. Mater Sci Eng C. 2021;128:112271.
  46. Zheng D, Giljohann DA, Chen DL, Massich MD, Wang X-Q, Iordanov H, Mirkin CA, Paller AS. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Spherical Nucleic Acids: Jenny Stanford Publishing; 2020;1605-1623.
  47. Ge X, Chen L, Zhao B, Yuan W. Rationale and application of PEGylated lipid-based system for advanced target delivery of siRNA. Front Pharmacol. 2021;11:598175.
  48. Sako M, Song F, Okamoto A, Koide H, Dewa T, Oku N, Asai T. Key determinants of siRNA delivery mediated by unique pH-responsive lipid-based liposomes. Int J Pharm. 2019;569:118606.
  49. Ebadi M, Rifqi Md Zain A, Tengku Abdul Aziz TH, Mohammadi H, Tee CAT, Rahimi Yusop M. Formulation and characterization of Fe3O4@ PEG nanoparticles loaded sorafenib; molecular studies and evaluation of cytotoxicity in liver cancer cell lines. Polymers. 2023;15(4):971.
  50. Bourang S, Jahanbakhsh-Godekahriz S, Asghari-Zakaria R, Parsa-Khankandi H, Noruzpour M, Calahorra J. Evaluation of antioxidant properties of essential oil, aqueous extract and metal nanoparticles biosynthesized from F. vulgare and their anticancer effect on two breast cancer cell lines (Sum-159, Hs-578T). Agric Biotechnol. 2024;16(1):235-66.
  51. Heidari R, Khosravian P, Mirzaei SA, Elahian F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep. 2021;11(1):20531.